
Computational Mathematics
For Learning and Data Analysis

Optimization

Based on prof. Antonio Frangioni’s lectures

Gemma Martini

August 27, 2021



2

A sincere thank you to Alessandro Cudazzo,
Donato Meoli, Giulia Volpi, Ivan Grujic and all those
who helped me improving these notes in style and contents.



Contents

1 Introduction 5
1.1 Introduction to machine learning problems . . . . . . . . . . . . . 5
1.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Linear estimation . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Low-rank approximation . . . . . . . . . . . . . . . . . . . 8
1.2.3 Support vector machines . . . . . . . . . . . . . . . . . . . 9

2 Mathematical background for optimization problems 11
2.1 Multi-objective Optimization . . . . . . . . . . . . . . . . . . . . 13
2.2 Infima, suprema and extended reals . . . . . . . . . . . . . . . . . 14
2.3 Sequences in R and optimization . . . . . . . . . . . . . . . . . . 15
2.4 Vector spaces and topology . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Topology in Rn . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Limit of a sequence in Rn . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7.1 Multivariate differentiability . . . . . . . . . . . . . . . . . 25
2.8 Simple functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.8.1 Linear functions . . . . . . . . . . . . . . . . . . . . . . . 32
2.8.2 Quadratic functions . . . . . . . . . . . . . . . . . . . . . 33

3 Unconstrained Optimality 39
3.1 Unconstrained Optimization . . . . . . . . . . . . . . . . . . . . . 39
3.2 First Order Model . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Second Order Model . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.1 Convex sets . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.2 Convex functions . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Convexity and Higher Order Information . . . . . . . . . . . . . 54
3.6 Subgradients and Subdifferentials . . . . . . . . . . . . . . . . . . 56

4 Unconstrained Optimization 59
4.1 Gradient Method for Quadratic Functions . . . . . . . . . . . . . 60
4.2 Gradient Method for Non Quadratic Functions . . . . . . . . . . 70

3



4 CONTENTS

4.3 Gradient method for non quadratic functions . . . . . . . . . . . 70
4.3.1 Finding the best step size . . . . . . . . . . . . . . . . . . 71

4.4 Good Practices for the Design of the Project . . . . . . . . . . . 88
4.5 General Descent Methods . . . . . . . . . . . . . . . . . . . . . . 89
4.6 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.6.1 Convex case . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.6.2 Interpretation of Newton’s method . . . . . . . . . . . . . 94
4.6.3 Non convex case . . . . . . . . . . . . . . . . . . . . . . . 94

4.7 Quasi-Newton’s Methods . . . . . . . . . . . . . . . . . . . . . . 97
4.7.1 Davidson-Fletcher-Powell . . . . . . . . . . . . . . . . . . 98
4.7.2 Broyden-Fletcher-Goldfarb-Shanno . . . . . . . . . . . . . 99
4.7.3 Poorman’s approach - limited memory BFGS . . . . . . . 100

4.8 Conjugate Gradient Method . . . . . . . . . . . . . . . . . . . . . 100
4.9 Deflected Gradient Methods . . . . . . . . . . . . . . . . . . . . . 102

4.9.1 Heavy ball gradient method . . . . . . . . . . . . . . . . . 103
4.9.2 Accelerated gradient . . . . . . . . . . . . . . . . . . . . . 104

4.10 Incremental Gradient Methods . . . . . . . . . . . . . . . . . . . 105
4.11 Subgradient Methods . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.11.1 Target level stepsize . . . . . . . . . . . . . . . . . . . . . 111
4.12 Deflected Subgradient Methods . . . . . . . . . . . . . . . . . . . 112
4.13 Smoothed Gradient Methods . . . . . . . . . . . . . . . . . . . . 113
4.14 Bundle Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.14.1 Cutting-plane algorithm . . . . . . . . . . . . . . . . . . . 115
4.14.2 Bundle methods . . . . . . . . . . . . . . . . . . . . . . . 116

5 Constrained Optimality 119
5.1 Constrained Optimization . . . . . . . . . . . . . . . . . . . . . . 119

5.1.1 Linear equality constraints . . . . . . . . . . . . . . . . . 120
5.1.2 Background for linear inequality constraints . . . . . . . . 122

5.2 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.3 Lagrangian Duality . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.4 Specialized Dual . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.4.1 Linear programs . . . . . . . . . . . . . . . . . . . . . . . 132
5.4.2 Quadratic programs . . . . . . . . . . . . . . . . . . . . . 133
5.4.3 Conic programs . . . . . . . . . . . . . . . . . . . . . . . . 134

5.5 Fenchel’s Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6 Constrained Optimization 137
6.1 Quadratic Problem with Linear Equality Constraints . . . . . . . 137
6.2 Quadratic Problem with Linear Inequality Constraints . . . . . . 139

6.2.1 Projected gradient method . . . . . . . . . . . . . . . . . 139
6.2.2 Projected gradient method with box constraints . . . . . 143
6.2.3 Active-set method for quadratic programs . . . . . . . . . 144
6.2.4 Frank-Wolfe’s method . . . . . . . . . . . . . . . . . . . . 145

6.3 Dual methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.3.1 Dual methods for linear constrained optimization . . . . . 147



CONTENTS 5

6.3.2 Separable problems and partial dual . . . . . . . . . . . . 149
6.4 Barrier Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.4.1 Barrier function and central path . . . . . . . . . . . . . . 149
6.5 Primal-dual interior point method . . . . . . . . . . . . . . . . . 154



6 CONTENTS



Chapter 1

Introduction

This course will deal with the optimization and numerical analysis of machine
learning problems. We are not going to discuss difficult problems (e.g. NP-hard
problems), besides we will present an efficient solution for simple ones (often
convex ones), since we are dealing with huge amount of data.

Let us start with a warm up on machine learning problems.

1.1 Introduction to machine learning problems
Machine learning techniques are not as “young” as it might seem, the intuition
has been there for ages, but we did not have enough calculus power. Machine
learning algorithms have started working well recently, thanks to the many
improvements in computer performances; for this reason, it is becoming a more
and more popular subject to study.

The main idea behind machine learning is to take a huge amount of data
(e.g. frames of a video for object-recognition) and squeeze them, in order to
process them. This intuitive concept is translated into mathematical terms as
“building a model” that fits our data. As in practical engineering problems,
people want to construct a model (a small sized representation of the large thing
we want to produce in the end) and try to understand its behaviour, before
actually building such an object. Let us take as an example the problem of
designing a jet. It is not clever to start building the plane before designing a
cheap prototype to better study its behaviour in the atmosphere.

The kind of models we want to build are cheap to construct and as close
as possible to the real problem we are studying. In physics, people try to find
the best mathematical model to describe a real world phenomenon. We will see
during this course that the core problem is computation, since the more accurate
the model, the more costly the prediction phase. Therefore, a good model is a
trade-off between accuracy and simplicity, namely it provides good prediction
without incurring in slow computations.

The model, though, has to be parametric: we do not have only one model,

7



8 CHAPTER 1. INTRODUCTION

we have a “shape” of a model, which is fit to our problem through the tuning of
some parameters.

Example 1.1.1. As an example, we are given three couples: f(x1) = y1,
f(x2) = y2, f(x3) = y3, as shown in Figure 1.1.

Figure 1.1: Geometric representation of the input. We are interested in finding a
model that fits the input data and allows to predict ȳ out of x̄.

We need to make some choices: first, we need to decide the kind of model
we believe is a good approximation of the objective function, say a linear model
f(x) = ax + b. After doing that, we are left with choosing its parameters (in
order to pick a line among the whole family of linear functions), namely a and b.

We are interested in building a model that fits the data we are given and
then tuning the parameters in order to achieve a good accuracy for a given
application (recall that the model is parametric, hence the right values for the
parameters have to be learned).

Another important characteristic of a good model is that it should not take
too long to be built.

In this course we do not concentrate on the problem of finding the model
that best fits our data. Our setting, instead, is such that we are given a problem
and a model and we perform a study on its behaviour through its parameters.
In other words, within the family of models with a given outline, we want to find
the one that better represents the phenomena observed. This is called fitting
and it is clearly some sort of optimization problem, where the fitting task is
typically the computational bottleneck.
However, machine learning is more than simply fitting: fitting minimizes training
error (or empirical risk), but ML aims at minimizing test error (i.e. generalization
error).

At first a machine learning solution builds a model that fits the observed
data and then performs an hyper-parameter tuning in order to achieve a good
“predicting power” on unseen inputs. In machine learning, a model that fits the
data while achieving good performances on new examples is said to be “non
overfitting”.



1.2. OPTIMIZATION 9

For machine learning purposes, a mathematical model should be:

• accurate (describing well the process under consideration)

• computationally inexpensive (providing answers rapidly)

• general (it can be applied to many different processes)

It goes without saying that achieving all these goals is practically impossible.

1.2 Optimization
In the rest of this lecture we are going to better understand what an optimization
problem is, through some intuitive real world examples.

� Terminology

In this course we will refer to vectors using the bold notation v ∈ Rn.
The i-th entry of vector v is denoted as vi ∈ R, while the j-th pattern in
the training set is a couple of vectors (xj,yj).
For more details on vectors and vector spaces and matrices see Section 2.4.

1.2.1 Linear estimation
Let us consider a phenomenon measured in terms of one real number y ∈ R that
is believed to depend on a vector x = [x1, . . . , xn]. We are provided a set of
observations: {(y1,x1), . . . , (ym,xm)}.

Definition 1.2.1 (Linear model). Let f : Rn → Rn be the objective function.
We call f̃(x) =

∑n
i=1 wixi +w0 = w+

T x+w0 the linear model of f for a given
set of parameters, which is a vector w = (w0,w+) = (w0, w1, . . . , wn) ∈ Rn+1.

How can we evaluate the “similarity” between our model and the objective
function? Through computing the “error” or difference between the objective
function value and the model prediction on each input. Under this assumption,
the error function may be used to find the best parameters for our model, by
solving a minimum problem:

Definition 1.2.2 (Least squares problem). Let f : Rn → Rn be the objective
function, such that f(x) = y and let Xw be our linear model. Then we can find
the best values for vector w ∈ Rn+1 by solving the least squares problem

min
w
‖y−Xw‖

where Y =

y1

...
ym

 ∈M(m,n,R) and X =

1 x1

...
...

1 xm

 ∈M(m,n+ 1,R).



10 CHAPTER 1. INTRODUCTION

If the matrix X is invertible then the simple solution is w = X−1y. The
point is that this operation is very costly when dealing with a huge number of
entries (in the next paragraph we will see a way to manage it).

Figure 1.2: A linear estimation fitting example

1.2.2 Low-rank approximation
A (large, sparse) matrix M ∈ M(n,m,R) describes a phenomenon depending
on pairs (e.g., objects bought by customers) and we may want to approximate
that matrix as the product between two smaller matrices (find a few features
that describe most of users’ choices): a “tall thin” matrix A ∈M(n, k,R) and a
“fat large” B ∈M(k,m,R) (where k � n,m).

M ≈ A · B

This problem can be translated into a numerical analysis problem of the
following shape

min
A,B
‖M −AB‖

The matrices A and B can be obtained from eigenvectors of MTM and
MMT , but matrix M is a huge and possibly dense matrix. Therefore, a more
efficient way should be used, which also avoids the explicit formation of MTM
and MMT because that would need a lot of memory.
Efficiently solving this problem requires:

• low-complexity computation

• avoiding the explicit forming of MTM and MMT

• exploiting the structure of M (sparsity, similar columns, . . . )

• ensuring that the solution is numerically stable

Mettere reference a numerically stable.



1.2. OPTIMIZATION 11

1.2.3 Support vector machines
Let us consider the so-called “decision problem”: given a set of values of many
parameters (variables) “label” a person i as ill or healthy, formally yi ∈ {1,−1}.

The geometric intuition in two dimensions is given by Figure 1.3. We would
like to find the line that better splits the plane into two regions, because this
could help to diagnose the next patient. The rationale here is to maximize the
space between the line and the nearest points (called margin), in order to have
a better accuracy.

It is known that the distance between the two hyperplanes (w0,w+) and (w′
0,w+)

in Figure 1.3 is computed as 2
‖w+‖ , so in order to maximize the distance between

the planes we aim at minimizing ‖w+‖. After a normalization step, for each
hyperplane that lies between (w0,w+) and (w′

0,w+) the following holds{
w+xi + w0 ≥ 1 if yi = 1
w+xi + w0 ≤ −1 if yi = −1

Figure 1.3: There are many possible boundaries that can be chosen as a model using
many angular coefficients. Our best guess is the one that maximizes the distance
between the line and the nearest points.

Under the hypotheses of this optimization problem, the maximum-margin sepa-
rating hyperplane (assuming that any exists) is the solution of

min
w
{‖w+‖2 : yi(w+xi + w0) ≥ 1, i = 1, . . . ,m}

In real world cases, most of the times there is no such line that splits
perfectly the positive examples from the negative ones. To overcome this issue
we introduce the concept of “penalty” that accounts for the number of points
that are misclassified, through the following

Definition 1.2.3 (SVM Primal problem). We term Support Vector Machine
primal problem (SVM-P) a convex constrained problem with complex constraints
that is formalized as



12 CHAPTER 1. INTRODUCTION

min
w,ξ
‖w+‖2 + C

m∑
i=1

ξi

yi(w+xi + w0) ≥ 1− ξi , ξi ≥ 0 , ∀i = 1, . . . ,m
(SVM-P)

Where C is an hyper-parameter that weights the violation of the separating
margin.

This definition formalizes the intuition that the approximated function may
have a greater norm and lead to a very small misclassification error, or it could be
the other way round. Both these solutions are acceptable and their performances
depend only on the problem.

Whenever we are able to solve a multi-objective optimization problem we
are also able to solve what is called the dual problem, which in our case has
the following shape.

Definition 1.2.4 (SVM Dual problem). We call Support Vector Machine dual
problem (SVM-D) a convex constrained quadratic problem defined as

max
α

m∑
i=1

αi − 1
2

m∑
i=1

∑m
j=1 αi < xi,xj > αj

m∑
i=1

yiαi = 0

0 ≤ αi ≤ C , ∀i = 1, . . . ,m

(SVM-D)

The idea behind the theory of duality is to obtain the solution of a problem by
solving an (apparently) different one.

Lemma 1.2.1. Given an optimal solution α∗ for the dual problem (SVM-D),
then w∗

+ =
∑m

i=1 α
∗
i y

ixi is optimal for the primal problem (SVM-P).

A reader who has a deeper background in the field of machine learning
knows that the scalar product in the dual form allows the usage of the so-called
“kernel trick”. This mathematical transformation allows the mapping of the
input space into a larger feature space where the points are more likely to be
linearly separable.

Theoretically, the feature space can be infinite-dimensional, provided that
the scalar product can be (efficiently) computed.

This whole course has the aim of presenting some techniques for solving
efficiently convex quadratic problems, as the ones presented above.



Chapter 2

Mathematical background
for optimization problems

As a warm-up, let us refer to univariate cases. We will move towards multivariate
examples later in this lecture.

Definition 2.0.1 (Minimum problem). Let S ⊂ R be a set, called feasible
region and let f : S → R be any function, called objective function. We
term minimum problem the problem of finding the minimum value of such f .
Formally,

f∗ = min
x
{f(x) : x ∈ S} (P)

J Mantra

In this course we will deal with minimum problems only. Luckily enough,
switching from minimum to maximum problems requires only some sign
adjustments.

Definition 2.0.2 (Feasible solution). Let F ⊆ R be a proper superset of the
feasible region S ⊂ F and let x ∈ F be a solution of the minimum problem (P).
We say that x is a feasible solution if x ∈ S. Conversely, x is unfeasible if
x ∈ F S.

Definition 2.0.3 (Optimal solution). Under the same hypothesis of the above
definition, we call x∗ that realizes f(x∗) = f∗ an optimal solution, where
f∗ ≤ f(x)∀x ∈ S and ∀v > f∗ ∃x ∈ S s.t. f(x) < v.

It is possible to find problems where there is no optimal solution at all.

Observation 2.0.1. There are two cases in which it is not possible to find an
optimal solution of a minimum problem:

13



14CHAPTER 2. MATHEMATICAL BACKGROUND FOR OPTIMIZATION PROBLEMS

1. the domain is empty, which may be not trivial to prove, since it is an
NP-hard problem sometimes;

2. the objective function is unbounded below (∀M ∃xM ∈ S s.t. f(xM ) ≤M).

Example 2.0.1 (Bad optimization problems). The following practical cases are
examples of problems that do not admit an optimal solution:

• empty case (S = ∅): min{f(x) = x : x ∈ R ∧ x ≤ −1 ∧ x ≥ 1}

• unbounded (below): min{f(x) = x : x ∈ R ∧ x ≤ 0}

• bad f and S: min{f(x) = x : x ∈ R ∧ x > 0}

• bad f : let us consider an iterative algorithm that moves towards the
optimum. It may happen that the function decreases and increases along
a certain direction, such function is not continuous so it is impossible to
reach the optimum:

min
{
f(x) =

{
x if x > 0
1 if x = 0

x ∈ [0, 1]
}

Solving an optimization problem can be one of the following procedures:

1. Finding x∗ and proving it is optimal

2. Proving S = ∅

3. Constructively proving that the function is unbounded (∀M ∃xM ∈ S
s.t. f(xM ) ≤M).

In this course we are interested in applying the theoretical concept to the
numerical world. Therefore, in our terms, “x ∈ R” actually means “x ∈ Q” with
up to k digits precision and most of the times we consider optimal a solution
which is close to the true optimal value, modulo some error (we call x̄, the
approximated optimal).

Definition 2.0.4 (Absolute error). We call absolute error the gap between
the real value and the one we obtained. Formally,

f(x̄)− f∗ ≤ ε

Definition 2.0.5 (Relative error). We term relative error the absolute error,
normalized by the true value of the function

( f(x̄)− f∗ )/| f∗ |≤ ε



2.1. MULTI-OBJECTIVE OPTIMIZATION 15

2.1 Multi-objective Optimization
It may happen that there are more than one function that need to be mini-
mized (maximized) and they could be contrasting or have incomparable units,
for example buying a painting which is the most beautiful and the cheapest
simultaneously.

In multi-objective optimization, typically there is not a feasible solution that
minimizes all objective functions at the same time. It is in this context that
Pareto optimal solutions are introduced: intuitively, such solutions cannot be
improved in any of the objectives without degrading at least one of the other
objectives.

Definition 2.1.1 (Pareto dominance). Let S ⊆ R and f1, . . . , fk : S → R and
let the minimum multi-objective optimization problem be formalized as

min
x
{[f1(x), . . . , fk(x)] : x ∈ S}

A feasible solution x1 ∈ S is said to (Pareto) dominate another solution
x2 ∈ S, if x1 “beats” x2 in any of the objective functions. Formally,

fi(x1) ≤ fi(x2) ∀i ∈ {1, 2, . . . , k}

Definition 2.1.2 (Pareto frontier). A solution x∗ ∈ S (and the corresponding
outcome f(x∗)) is called Pareto optimal, if there does not exist another solution
that dominates it. The set of Pareto optimal outcomes is often called the Pareto
frontier.

Figure 2.1: An example of Pareto frontier

Example 2.1.1. Let us take two functions f1 and f2. We want to solve the
minimization problem

min
x
{[f1(x), f2(x)] : x ∈ S} (P)

where f1 accounts for return of an investment and f2 accounts for the risk. For
solving this problem, we present two different approaches:



16CHAPTER 2. MATHEMATICAL BACKGROUND FOR OPTIMIZATION PROBLEMS

Figure 2.2: Maximize risk-adjusted return

Scalarization. Using a linear combination of the two functions, formally,
f(x) = αf1(x) + βf2(x). An example, where α = 1 is shown in Figure 2.2.

Budgeting. Intuitively corresponds to taking into account only one objective
function and add the others as constraints, provided that the values of the
other functions are not too high. In formal terms, f(x) = f1(x), where
we modify the admissible region S := S ∪ {x ∈ S : f2(x) ≤ b}. As an
example see Figure 2.3.

(a) Maximize return with budget
on maximum risk, min{f1(x) :
f2(x) ≤ β : x ∈ S}

(b) Minimize risk with budget on
minimum return, min{f2(x) :
f1(x) ≤ β : x ∈ S}

Figure 2.3: Budgeting

2.2 Infima, suprema and extended reals
Let us introduce some mathematical background on minimization (maximiza-
tion).

Definition 2.2.1 (Totally ordered set). We say that a set S is totally ordered
if ∀x, y ∈ S, either f(x) ≤ f(y) or f(y) ≤ f(x).

Definition 2.2.2 (Infima and suprema). Let R be a totally ordered set and let
S be one of its subsets (S ⊆ R):

s is the infimum of S(s = inf S) iff s ≤ s ∀s ∈ S ∧ ∀t > s ∃ s ∈ S s.t. s ≤ t

s̄ is the supremum of S(s̄ = supS) iff s̄ ≥ s ∀s ∈ S ∧ ∀t < s̄ ∃ s ∈ S s.t. s ≥ t



2.3. SEQUENCES IN R AND OPTIMIZATION 17

An attentive reader may notice that not all subsets of R allow infima and
suprema.

Definition 2.2.3 (Extended real). In the case of unbounded functions the value
of infima or suprema are∞, and we call extended reals R = {−∞}∪R∪{+∞}.

Property 2.2.1. The following holds for the extended reals:

• For all S ⊆ R, sup/inf S ∈ R

• inf S = −∞ indicates that there is no (finite) infimum

• inf ∅ =∞, sup ∅ = −∞

2.3 Sequences in R and optimization
We are interested in studying sequences, because iterative methods can be seen
as sequences of points: we start from a certain point and move towards the
optimum.

� Terminology

We denote a sequence of iterates as {xi} ⊂ S and we denote the plugging
a function f into such a sequence as vi = f(xi).

Definition 2.3.1 (Limit). Given a sequence {xi} the limit for i→∞ is defined
as

lim
i→∞

vi = v ⇐⇒ ∀ε > 0 ∃ h s.t. |vi − v| ≤ ε ∀i ≥ h

It may happen that a sequence has or does not have a limit. For example { 1
n}

has limit 0 for n→ +∞, while {(−1)n} does not have any.

Fact 2.3.1. Let us be given a monotone sequence, then the sequence does have
a limit.

Notice that a sequence either is monotone or it can be “split” into two
monotone sequences.

Example 2.3.1. Let us consider the sequence {(−1)n}. It does not converge
to any value, but it can be split into {(−1)2n} and {(−1)2n+1} and these two
subsequences are both monotone.

In general, monotonicity on sequences in R can be performed by splitting the
sequence into a non-decreasing sequence and a non-increasing sequence. Formally,
given a sequence {vi} ⊂ S we obtain {vi} ⊂ {vi} ⊂ S and {v̄i} ⊂ {vi} ⊂ S
such that v1 ≤ v2 ≤ . . . and v̄1 ≥ v̄2 ≥ . . .. It also holds that v∗

i = inf{vh : h ≤
i} and v̄∗

i = sup{vh : h ≤ i}. {vi} and {v̄i} have a limit and they are formalized
as lim inf

i→∞
vi lim

i→∞
vi

∗ = v∗
∞ = f∗ and lim sup

i→∞
vi lim

i→∞
v̄∗

i = v∗
∞ = f∗.



18CHAPTER 2. MATHEMATICAL BACKGROUND FOR OPTIMIZATION PROBLEMS

Fact 2.3.2. The following holds:

• v̄i ≥ vi ⇒ lim sup
i→∞

vi ≥ lim inf
i→∞

vi

• lim
i→∞

vi = v ⇐⇒ lim sup
i→∞

vi = v = lim inf
i→∞

vi

2.4 Vector spaces and topology
In our setting, real numbers are used to describe each feature of a dataset and
this has the mathematical equivalent in the term “vector”.

Definition 2.4.1 (Euclidean vector space). We call n-dimensional Euclidean
vector space the set of columns made of n real numbers. Formally,

Rn :=
{

x1
x2
...
xn

 : xi ∈ R, i = 1, . . . , n
}

Equivalently, we can characterize the Euclidean space as Cartesian product of R

n times: Rn =
n︷ ︸︸ ︷

R×R× . . .R. Every vector space and in particular Euclidean
spaces are closed under sum and scalar multiplication. The elements of a vector
space are called vectors.

The main operations on elements of the Euclidean space (vectors) are:

Sum: x + y :=


x1 + y1
x2 + y2

...
xn + yn



Scalar multiplication: αx =


αx1
αx2

...
αxn


� Terminology

In linear algebra, x ∈ Rn is a column vector. Whenever a row vector is
needed for dimensionality issues it is denoted as xT .

Definition 2.4.2 (Basis). Any vector x ∈ Rn can be obtained from a linear
combination of a set of vectors that is called “basis”. In Euclidean spaces there
exists a special basis that is called “canonical”, where each vector ui has a 1 in
position i and a 0 elsewhere.



2.4. VECTOR SPACES AND TOPOLOGY 19

Definition 2.4.3 (Finite vector space). Let V (K, n,m) (it is read “a vector
space of dimensions n and m on a field K”) be a vector space. It is said to be
finite if its bases have a finite cardinality.

At this point, it is crucial to observe that not all vector spaces are finite nor
they are a totally ordered set.
In this course we will deal with the concept of limit over a vector space very
often and for this purpose we are going to introduce a topology on vector spaces
(i.e. norm, scalar product, distance).

2.4.1 Topology in Rn

Definition 2.4.4 (Standard scalar product). Let x,y ∈ Rn we define the
standard scalar product between these two vectors as

< x,y > := yT x =
n∑

i=1
xiyi = x1y1 + · · ·+ xnyn

Fact 2.4.1. A scalar product has the following properties:

1. < x,y >=< y,x > ∀x,y ∈ Rn (symmetry)

2. < x,x >≥ 0, ∀x ∈ Rn, < x,x >= 0 ⇐⇒ x = 0;

3. < αx,y >= α < x,y >, ∀x,y ∈ Rn,∀α ∈ R;

4. < x + y, z >=< x, z > + < y, z >, ∀x,y, z ∈ Rn.

An important geometric characterization of the scalar product is the one that
uses angles:

< x,y >= ‖x‖ ‖y‖ cos θ

According to this new definition, we can observe that x and y are orthogonal
(x ⊥ y) iff < x,y >= 0 and in all the other cases they somehow point in the
same direction.

We could rewrite the scalar product between x and y as yT Ix, where
I ∈ D(R, n)∗ is the identity matrix. Thanks to this observation. we can state
the more general form of the scalar product:

Definition 2.4.5 (Scalar product). Let x,y ∈ Rn and let M ∈ M(R, n) be a
positive definite matrix (for further details see). We call scalar product the
following

< x,y >M := yTMx

Aggiungere reference al punto in cui si definisce una matrice definita positiva

∗We denote with D(R, n) the vector space of all n × n diagonal matrices on the Euclidean
field R.



20CHAPTER 2. MATHEMATICAL BACKGROUND FOR OPTIMIZATION PROBLEMS

Definition 2.4.6 (Euclidean distance). The Euclidean distance between two
points x and y in Rn is the length of the line segment connecting them. Formally,
let us take two points in the n-dimensional Euclidean space xT = (x1, x2, . . . , xn)
and yT = (y1, y2, . . . , yn), then the distance (d) from x to y, or equivalently
from y to x, is given by

d(x,y) := ‖x− y‖ =
√

(x1 − y1)2 + · · ·+ (xn − yn)2

Fact 2.4.2. The Euclidean distance has the following properties:

1. d(x,y) ≥ 0 ∀x,y ∈ Rn , d(x,y) = 0 ⇐⇒ x = y

2. d(αx, 0) = |α|d(x, 0) ∀x ∈ Rn, ∀α ∈ R

3. d(x,y) ≤ d(x, z) + d(z,y) ∀x,y, z ∈ Rn (triangle inequality)

Definition 2.4.7 (Norm). Given a vector space V over a field K of the real or
complex numbers, a norm on V is a nonnegative-valued function p : V → R

with the following properties:

1. For all a ∈ K and for all u,v ∈ V p(u+v) ≤ p(u)+p(v) (being subadditive
or satisfying the triangle inequality);

2. p(av) = |a|p(v) (being absolutely homogeneous or absolutely scalable);

3. If p(v) = 0 then v = 0 is the zero vector (being positive definite or being
point-separating).

Definition 2.4.8 (Euclidean norm). Let x ∈ Rn, we define euclidean norm
of x the square root of the squared sum of all its entries. Formally,

‖x‖2 :=

√√√√ n∑
i=1

xi
2 =
√
< x,x >

Definition 2.4.9 (Frobenius’ norm). Let A ∈M(n,R), we define Frobenius’
norm of A the square root of the squared sum of all its entries. Formally,

‖A‖F :=

√√√√ m∑
i=1

n∑
j=1

aij
2

Fact 2.4.3. Any norm on a vector space has the following properties:

1. ‖x‖ ≥ 0 ∀x ∈ Rn and ‖x‖ = 0 ⇐⇒ x = 0;

2. ‖αx‖ = |α| ‖x‖ , ∀x ∈ Rn, ∀α ∈ R;

3. ‖x + y‖ ≤ ‖x‖+ ‖y‖ , ∀x,y ∈ Rn (triangle inequality).



2.4. VECTOR SPACES AND TOPOLOGY 21

Fact 2.4.4 (Cauchy-Schwartz’s inequality). Let x,y ∈ Rn. The following holds:

< x,y >2 ≤ < x,x >< y,y > or, equivalently |< x,y >| ≤ ‖x‖2‖y‖2, ∀x,y ∈ R
n

Fact 2.4.5 (Parallelogram Law).

2 ‖x‖2 + 2 ‖y‖2 = ‖x + y‖2 + ‖x− y‖2

Corollary 2.4.6.

‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2 < x,y >

Proof.
2‖x‖2 + 2‖y‖2 = ‖x + y‖2 + ‖x− y‖2

iff

‖x + y‖2 = 2‖x‖2 + 2‖y‖2 − ‖x− y‖2

= ‖x‖2 + ‖y‖2 + ‖x‖2 + ‖y‖2 − ‖x− y‖2

= ‖x‖2 + ‖y‖2 +
n∑

i=1
xi

2 +
n∑

i=1
yi

2 −
n∑

i=1
(xi − yi)2

= ‖x‖2 + ‖y‖2 +
n∑

i=1
xi

2 + yi
2 − xi

2 − yi
2 + 2xiyi

= ‖x‖2 + ‖y‖2 + 2 ·
n∑

i=1
xiyi︸ ︷︷ ︸

<x,y>

(2.4.1)

The 2-norm is a special case of the more general p-norm.

Definition 2.4.10 (p-norm). Let p ≥ 1 be a real number, the p-norm of a vector
x ∈ Rn is defined as follows:

‖x‖p :=
(

n∑
i=1
|xi|p

)1/p

Observation 2.4.1. We require p ≥ 1 for the general definition of the p-norm
because the triangle inequality fails to hold if p < 1.

Fact 2.4.7. The p-norm is convex for p ≥ 1.

Proof. For this proof we need the definition of convexity, which is a concept that
will be expanded in Section 3.4, more precisely in Definition 3.4.9. By properties
2 and 3 of Proposition 2.4.3, we get the following:

‖αx + (1− α)y‖ ≤ ‖λx‖+ ‖(1− α)y)‖ = α ‖x‖+ (1− α) ‖y‖



22CHAPTER 2. MATHEMATICAL BACKGROUND FOR OPTIMIZATION PROBLEMS

The most important p-norms are the following:

• ‖x‖1 :=
∑n

i=1|xi|

• ‖x‖∞ := max{|xi| : i = 1, . . . , n}

• ‖x‖i := |{i : |xi| > 0}|

Fact 2.4.8. For any given finite-dimensional vector space V (K, n) (e.g. Rn),
all norms on V are equivalent (therefore, convergence in one norm implies
convergence in any other norm). Formally, ∀ ‖·‖A , ‖·‖B:

∃ 0 < α < β s.t α ‖x‖A ≤ ‖x‖B ≤ β ‖x‖A ∀x ∈ V

This rule may not apply in infinite-dimensional vector spaces such as function
spaces. For such cases we define the

Fact 2.4.9 (Holder’s inequality). Let V (K, n) be a (possibly infinite) vector
space and let p, q ∈ [1,∞) with 1/p+ 1/q = 1. The Holder’s inequality states
that

< x,y >2≤ ‖x‖p ‖y‖q

Definition 2.4.11 (Ball). Let x̄ ∈ Rn. We term ball centered in x̄ and having
ε ∈ R as radius as the set of points that are close enough to x: B(x̄, ε) = {x ∈
Rn : ‖x− x̄‖ ≤ ε}.

Moreover, we term unit ball a ball where ε = 1. An attentive reader may
notice that a unit ball has different shapes for different real values of p for the
norm. In Figure 2.4 we may observe the different shapes of the same ball varying
the value p in the p-norm.

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 2.4: The shapes of balls centered in the origin of radius 1 varying the value of
p-norm.



2.5. LIMIT OF A SEQUENCE IN RN 23

2.5 Limit of a sequence in Rn

We have now all the tools to define the notion of limit of a sequence in Rn.

Definition 2.5.1 (Limit of a sequence in the Euclidean space). Let {xi} ⊂ Rn

be a sequence in Rn. We say that {xi} converges to a limit x for i→ +∞ and
denote limi→∞ xi = x or {xi} → x if ∀ε > 0 ∃h s.t. d(xi,x) ≤ ε ∀i ≥ h
or, equivalently, ∀ε > 0 ∃h s.t. xi ∈ B(x, ε) ∀i ≥ h
or, even limi→∞ d(xi,x) = 0.

The definition of limit formalizes the idea that the points of {xi} eventually
all come arbitrarily close to x. Moreover, since Rn is not totally ordered, there
is no obvious lim inf nor lim sup.

Definition 2.5.2 (Minimizing sequence). Let {xi} ∈ S be a sequence and let
f : S → Rn. We say that {xi} is a minimizing sequence if the sequence of
function values {f(xi)} tends to the greatest lower bound of f (f∗ = min{f(x) :
x ∈ S}).

Example 2.5.1. As an example, consider the following minimum problems and
sequences:

min{f(x) = x : x ∈ R ∧ x > 0} and the sequence {xi = 1/i}

min{f(x) = 1/x : x ∈ R ∧ x > 0} and the sequence {xi = i}
In both cases, {f(xi)} → 0, but it is not an optimum.

We want conditions that ensure that if {f(xi)} converges to a number ({f(xi)} →
f∗) then {xi} → x∗ ∈ S is an optimal solution.

Definition 2.5.3 (Interior and border of a set). Given S ⊆ Rn, we say that x is
an interior point (x ∈ int(S)) if it lies inside a ball contained in S. Formally,
∃r > 0 s.t. B(x, r) ⊆ S.

Moreover, we term border points those x ∈ ∂(S) such that all the points in
the ball centered in x lie for a half inside the set S and for the other half outside.
Formally, ∀r > 0 ∃y, z ∈ B(x, r), where y ∈ S ∧ z /∈ S.

Notice that a point on the boundary is not necessarily inside the ball, in that
case we talk about open set (a set which is identical to its interior: S = int(S)).

Definition 2.5.4 (Closure of a set). Let S ⊆ Rn we term closure of S the set
cl(S) = int(S) ∪ ∂S.

Definition 2.5.5 (Closed set). We say that a set S ⊆ Rn is closed if it coincides
with its closure: S = cl(S).

Equivalently, a set S is termed closed if its complementary (Rn S) is open.

It is interesting to notice that all the functions that lead to minimizing
sequences and do not converge to an optimum are all defined in open sets.

Notice that there are sets that are both open and closed, for example Rn.



24CHAPTER 2. MATHEMATICAL BACKGROUND FOR OPTIMIZATION PROBLEMS

Definition 2.5.6 (Bounded set). Let S ⊆ Rn. We say that S is bounded if
∃r > 0 such that S ⊆ B(0, r).

Intuitively, a bounded set does not go to ∞.

Definition 2.5.7 (Compact set). Let S ⊆ Rn. We term S compact if it is
both closed and bounded.

Definition 2.5.8 (Accumulation point). Let {xi} ⊆ S be a sequence. We say
that x is an accumulation point if ∃ {xni

} subsequence of {xi} converging to
x. Formally, {xni

} → x or lim inf
i→∞

d(xni
, x) = 0.

Theorem 2.5.1 (Bolzano-Weierstrass). Let {xi} ⊆ S be a bounded, real se-
quence. Then it has a converging subsequence.

Fact 2.5.2. Let {xi} ⊆ S be a bounded sequence of real numbers. Then {xi}
has at least one accumulation point.

Proof. Since {xi} is bounded, by the Bolzano-Weierstrass theorem, {xi} contains
a convergent subsequence {xni

}. Suppose that {xni
} converges to a values x ∈ R.

Then x is an accumulation point for {xi}.

Fact 2.5.3. Let S be a compact set and let {xi} ⊆ S be a minimizing sequence
for the objective function f . The limit of the sequence is a feasible solution.

Proof. Thanks to Proposition 2.5.2 {xi} has an accumulation point x ∈ S. Since
it is minimizing f(x) is feasible.

Why did we say feasible but not optimal? If the function is not continuous
(cfr. Figure 2.5) it may happen that the sequence is minimizing, but the limit is
not the optimum.

Figure 2.5: Case of non-continuity of the objective function in the border point (0, 0).

Definition 2.5.9 (Domain). Let f : D → R. We term D domain of f and
denote D = dom(f).



2.6. CONTINUITY 25

J Mantra

In this course we do not take into account the domain of functions, because
we can force all functions to be defined in the whole space Rn as follows:

f : Rn → R̄, where f(x) =
{
∞ for x /∈ D
f(x) otherwise

Definition 2.5.10 (Graph and epigraph). Let f : Rn → R. We term graph
the set of ordered couples representing the function value in a point and the point
itself. Formally, gr(f) = {(f(x), x) : x ∈ dom(f)}.

Conversely, we term epigraph the set of ordered couples representing all the
points that are above the function value. Formally, epi(f) = {(v, x) : x ∈
dom(f) ∧ v ≥ f(x)}, see Figure 2.6.

f(x)

x

gr f(x)

(a) Graph

f(x)

x

epi f(x)

(b) Epigraph

Figure 2.6: Graph and epigraph

When dealing with multidimensional inputs spaces it is crucial to have
mathematical tools that make possible to somehow “see” the function’s behaviour
in a lower-dimensional space.

Definition 2.5.11 (Level and sublevel set). Let f : Rn → R. We term level
set the set of all the inputs that have the same output value. Formally, L(f, v) =
{x ∈ dom(f) : f(x) = v}.

Conversely, we term sublevel set the set of all the inputs which image is
smaller than a fixed value v: S(f, v) = {x ∈ dom(f) : f(x) ≤ v}, see Figure 2.7.

2.6 Continuity
Definition 2.6.1 (Continuity). Let f : Rn → R and let x ∈ Rn. We say that f
is continuous in x if ∀ε > 0 ∃ δ > 0 such that ∀y ∈ B(x, δ) |f(y)− f(x)| < ε.

Property 2.6.1. Let f, g : Rn → R and let x ∈ Rn such that f and g are
continuous in x. The following holds:



26CHAPTER 2. MATHEMATICAL BACKGROUND FOR OPTIMIZATION PROBLEMS

f(x)

x

v

L(f, v)

(a) Level set

f(x)

x

v

S(f, v)

(b) Sub-level set

Figure 2.7: Level and sub-level sets

1. f + g, f · g continuous at x

2. max{f, g} and min{f, g} continuous at x

3. f ◦ g ≡ f(g(·)) continuous at x

Theorem 2.6.2 (Intermediate value). Let f : R→ R. f is continuous on [a, b]
if ∀v ∈ R s.t. min{f(a), f(b)} ≤ v ≤ max{f(a), f(b)} ∃ c ∈ [a, b]: f(c) = v.

Theorem 2.6.3 (Weierstrass extreme value theorem). Let S ⊆ Rn be a compact
set and let f be continuous on S. Then f must attain a maximum and a
minimum, therefore (P ) has an optimal solution.

Equivalently, let S ⊆ Rn compact and let f continuous on S. Then all
accumulation points of any minimizing sequence are optima and there is at least
one.

Definition 2.6.2 (Lipschitz continuity). Let f : Rn → R. We term f Lipschitz
continuous (L.c.) on S ⊆ Rn if ∃L > 0 such that

|f(x)− f(y)| ≤ L ‖x− y‖ ∀x,y ∈ S

More generally, we say that f is globally Lipschitz continuous when S = Rn

and it is locally Lipschitz continuous at x if ∃ ε > 0 S = B(x, ε).

Notice that Lipschitz continuity offers a stronger form of continuity and that
the L constant value depends on S. The wider the set the smaller L.

Fact 2.6.4. Let f : Rn → R. On a compact set S ⊆ Rn if f is continuous then
it is Lipschitz continuous.

Definition 2.6.3 (Lower(upper) semi-continuity). Let {xi} ⊆ Rn be a sequence
with accumulation point in x and let f : Rn → R. f is lower (upper) semi-
continuous (l.(u.)s.c.) at x if f(x) ≤ lim inf

i→∞
f(xi) (f(x) ≥ lim sup

i→∞
f(xi)).

Equivalently, lim inf y→ xf(y) ≥ f(x), lim sup
y→x

f(y) ≤ f(x).



2.7. DERIVATIVES 27

2.7 Derivatives
In this section we address the problem of inferring information on a complicated
function around a certain value x̄ using very simple functions, that are able
to provide reliable information around that x̄. Those functions are called
“derivatives”.
Let us start with a brief recap on single-dimension differentiability.
Definition 2.7.1 (Left and right derivative). Let f : R → R. We term left
derivative f ′

−(x) = lim
t→0−

[f(x+ t)− f(x)]/t.
Conversely, right derivative f ′

+(x) = lim
t→0+

[f(x+ t)− f(x)]/t.

Definition 2.7.2 (Differentiable). Let f : R → R. We say that f is differ-
entiable at x ∈ dom(f) if both left and right derivatives exist and coincide.
Formally, ∃f ′

−, f
′
+ and f ′

−(x) = f ′
+(x).

Fact 2.7.1. Let f : R→ R be differentiable in x ∈ dom(f) then f is continuous
in x.

Theorem 2.7.2 (Mean value theorem). Let f : R→ R continuous on [a, b] and
differentiable on (a, b) then ∃ c ∈ (a, b) s.t. f ′(c) = ( f(b)− f(a) )/(b− a).
Theorem 2.7.3 (Rolle’s theorem). Let f : R → R. If f(a) = f(b) then
∃ c ∈ (a, b) s.t. f ′(c) = 0
Corollary 2.7.4. In the same hypothesis of Rolle’s theorem, let a and b consec-
utive roots of f . Then f ′(a) and f ′(b) have opposite sign.

2.7.1 Multivariate differentiability
Definition 2.7.3 (Partial derivative). Let f : Rn → R. We term partial
derivative of f w.r.t. xi at x ∈ Rn as

∂f

∂xi
(x) = lim

t→0

f(x1, , . . . , xi−1, xi + t, xi+1, . . . , xn)− f(x)
t

In other words, it is just f ′(x1, . . . , xi−1, x, xi+1, . . . , xn), considering each
component xj where j 6= i as constant.

Definition 2.7.4 (Gradient). Given f : Rn → R. We term gradient of f the
vector of all the partial derivatives and we denote Rn 3 ∇f = ( ∂f

∂x1
, . . . , ∂f

∂xn
)T .

The gradient is the direction on which the function increases more rapidly,
while the opposite of the gradient suggests the direction on which the function
decreases the most.
Definition 2.7.5 (Directional derivative). Let f : Rn → R. The directional
derivative represents the rate of change of f from a point x ∈ Rn along a
specific direction d ∈ Rn. Formally,

∂f

∂d (x) := lim
t→0

f(x + td)− f(x)
t



28CHAPTER 2. MATHEMATICAL BACKGROUND FOR OPTIMIZATION PROBLEMS

Notice that in a multivariate space it is not possible to assure differentiability
checking if the directional derivatives are equal, because there is an infinite
number of different directions.

Let us now introduce the notion of multivariate differentiability.

Definition 2.7.6 (Differentiable). Let f : Rn → R. We say that f is differen-
tiable at x ∈ Rn if ∃ a linear function φ(h) =< c,h > +f(x) s.t.

lim
‖h‖→0

‖f(x + h)− φ(h)‖
‖h‖ = 0

The intuition here is that the linear function φ should approximate f pretty well
around x.

Fact 2.7.5. Let f : Rn → R be differentiable at x. Then f is locally Lipschitz
continuous at x.

Corollary 2.7.6. Let f : Rn → R be differentiable at x. Then f is continuous
at x.

Notice that the converse does not hold.

Fact 2.7.7. Let f : Rn → R, let x ∈ Rn and let us assume ∃δ > 0 s.t. ∀i ∂f
∂xi

(y)
is continuous ∀y ∈ B(x, δ).

Then f differentiable at point x.

Notice that the converse of Proposition 2.7.7 does not hold either.
We are now ready to introduce a class of functions that allows good results

for optimization: the C1 class.

Definition 2.7.7 (C1 class). We call C1-class the class of functions with con-
tinuous gradient.

Fact 2.7.8. Let f ∈ C1, then f is differentiable everywhere and also continuous
everywhere.

Definition 2.7.8 (First order model). Let f : Rn → R and let x ∈ dom(f) We
term first order model of f at point x ∈ Rn

Lx(y) = ∇f(x)(y− x) + f(x)

Example 2.7.1. Let us consider some functions that are not differentiable in
the minimum.

The function f1(x1, x2) =
‖[x1, x2]‖ = |x1|+|x2| has some
kinks, that are points where the
function is not smooth, hence points
where the directional derivatives are
not defined.



2.7. DERIVATIVES 29

The function f2(x1, x2) = x1
2x2

x12+x22

may be put to 0 in (0, 0) for continu-
ity, but it is still not differentiable in
(0, 0) although the function admits
directional derivatives and looks kind
of smooth.

The function f3(x1, x2) =(
x1

2x2
x14+x22

)2
is not continuous

in 0. The directional derivatives
exist and they are equal, but still f
is non differentiable because of the
non continuity.

In general, we look at the gradient in an n+ 1-dimensional space, where n
dimensions are needed for the input and the spare dimension is used for the
function value (in Example 2.7.1 the input + output space was R3).

It is possible to get information about the gradient staying in a n-dimensional
space, using the level sets: all the points that have the same output value (as
defined in Definition 2.5.11).

� Terminology

In Rn the concept of hyperplane that is tangent to the level sets of the
function f in a certain point x is denoted as S(Lx, f(x)) and it holds
that is orthogonal to the gradient and also to the hyperplane tangent to
the function.

Fact 2.7.9. Let f : Rn → R and let x ∈ dom(f) such that f is differentiable at
x. Then (Lx, f(x)) ⊥ S(f, f(x)) ⊥ ∇f(x).

Geometrically speaking, we can observe that a function is smooth whenever
its level sets are smooth.

Fact 2.7.10. Let f : Rn → R and let x ∈ dom(f) such that f is differentiable
at x. The tangent to the level sets with respect to the variable x is smooth.

Le us take f2 of Example 2.7.1, where∇f(x) =
( 2x1x2

3

(x12+x22)2

x1
2(x1

2−x2
2)

(x12+x22)2

)
. In Figure 2.8

we can observe that whenever the function is non differentiable, say x̄, the
hyperplane tangent to the level sets has some kinks and the surroundings of x̄
appear to be less and less smooth the closer we get ot x̄.



30CHAPTER 2. MATHEMATICAL BACKGROUND FOR OPTIMIZATION PROBLEMS

Figure 2.8: Shape of the level sets when x → x̄.

Example 2.7.2 (On derivatives). Let f : R2 → R such that f(x, y) = x2ey.
Compute the partial derivatives and the directional derivatives in the two direc-
tions d1 = (0, 1)T and d2 = (1, 0)T .

• ∂f
∂x = 2xey

• ∂f
∂y = x2ey

• ∂f
∂d1

= lim
t→0

f(x+t·0,y+t·1)
t = lim

t→0
f(x,y+t)

t . An attentive reader may notice
that the directional derivative in direction d1 is equivalent to the derivative
on the second component.

• ∂f
∂d2

= lim
t→0

f(x+t·1,y+t·0)
t = lim

t→0
f(x+t,y)

t . Conversely, with respect to what
stated before, the directional derivative of f along the direction d2 is
equivalent to the partial derivative w.r.t the first component.

Let us compute the scalar product between the gradient and the direction d1:

∂f

∂d1
=<

(
2xey

x2ey

)
,

(
0
1

)
>=

(
2xey · 0
x2ey · 1

)
=
(

0
x2ey

)
The intuition of this example is formalized in the following

Fact 2.7.11. Let f : Rn → R. The directional derivative along a certain
direction d ∈ Rn can be computed as the scalar product between the gradient of
the function and the direction, formally

∂f

∂d =< ∇f,d >

Until now we only considered real valued function, namely those that go from
generic Rn to R. We can generalize this definition and consider the following

Definition 2.7.9 (Vector-valued function). A function which codomain is multi-
dimensional is called vector-valued function. Formally, f : Rn → Rm, where

f(x) =


f1(x)
f2(x)

...
fm(x)

 ∈ Rm.



2.7. DERIVATIVES 31

For such functions the computation of the derivative requires to specify not
only the component with respect to the one the derivation should be performed,
but also the index of the function.

Definition 2.7.10 (Partial derivative for vector-valued functions). Let f : Rn →
Rm, the partial derivative of the j-th function with respect to the i-th component
is

∂fj

∂xi
(x) = lim

t→0

fj(x1, x2, . . . , xi−1, . . . , xi + t, xi+1, . . . , xn)− fj(x)
t

where t ∈ R.

Definition 2.7.11 (Jacobian). Let f : Rn → Rm be a vector-valued function.
We call Jacobian the matrix of all its first-order partial derivatives.

Jf(x) =


∂f1(x)

∂x1
· · · ∂f1(x)

∂xn

...
. . .

...
∂fm(x)

∂x1
· · · ∂fm(x)

∂xn

 =


∇f1(x)
∇f2(x)

...
∇fm(x)

 ∈M(m,n,R)

The second order derivative of a scalar-valued function is a matrix, defined as

Definition 2.7.12 (Hessian). Let f : Rn → R, we call Hessian of f

∇2f(x) := J∇f(x) =


∂2f
∂x2

1
(x) ∂2f

∂x2∂x1
(x) · · · ∂2f

∂xn∂x1
(x)

∂2f
∂x1∂x2

(x) ∂2f
∂x2

2
(x) · · · ∂2f

∂xn∂x2
(x)

...
...

. . .
...

∂2f
∂x1∂xn

(x) ∂2f
∂x2∂xn

(x) · · · ∂2f
∂x2

n
(x)


Example 2.7.3. Let f : R2 → R such that f(x, y) = x2ey as before, where the
gradient was

∇f(x) =
(

∂f
∂x
∂f
∂y

)
=
(

2xey

x2ey

)
Let us compute the second derivative of this function:

∇2f(x) =
(

∂2f
∂x∂x

∂2f
∂y∂x

∂2f
∂x∂y

∂2f
∂y∂y

)
=
(

2ey 2xey

2xey x2ey

)
The size of the matrix grows very rapidly with the number of derivatives that we
make (real valued function: 1 number, gradient: 2 numbers, Hessian 4 numbers).

In optimization, handling Hessians is a crucial task, because such matrices
are very large hence unfeasible most of the times, we will see in this course how
to gather information about the Hessian without actually computing it.

In most cases, the Hessian is a symmetric matrix, as stated in the following



32CHAPTER 2. MATHEMATICAL BACKGROUND FOR OPTIMIZATION PROBLEMS

Theorem 2.7.12 (Schwartz’s theorem). Let f : Rn → R such that ∇2f(x)
exists and it is continuous and let us take x ∈ Rn. ∃δ > 0 s.t. ∀x′ ∈ B(x, δ) and
∀i, j ∈ {1, 2, . . . , n} ∂2f

∂xj∂xi
(x′) and ∂2f

∂xi∂xj
(x′) exist and they are equal:

∂2f

∂xj∂xi
(x′) = ∂2f

∂xi∂xj
(x′)

Definition 2.7.13 (C2 functions). Let f : Rn → Rm. We say that f belongs
to C2 class iff ∇2f(x) is continuous.

Corollary 2.7.13. Let f : Rn → R such that f ∈ C2, then the Hessian is
symmetric and the gradient is continuous.

Notice that the Hessian being symmetric means that its eigenvalues are real.
Aggiungere reference sulla parte di analisi numerica ed autovalori

We are now interested in providing some approximations to a generic function
f . Such approximations are useful tools to have a hint on how to move along a
decreasing direction, but the information is accurate only locally.

Definition 2.7.14 (First order Taylor’s model). Let f : Rn → R ∈ C1, we
define the first-order Taylor’s formula as a linear approximation of the
function f in a neighborhood of x.
Formally, for a given ball B(x, δ), ∀x′ ∈ B(x, δ) ∃ α ∈ (0, 1) s.t.

f(x′) ≈ Lx(x′) =< ∇f(αx + (1− α)x′),x′ − x > +f(x)

Equivalently, we can write the so-called remainder version of first-order
Taylor formula as

f(x′) ≈ Lx(x′) =< ∇f(x),x′ − x > +f(x) +R2(x′) (2.7.1)

where R2 is called quadratic remainder that is such that lim
h→0

R(h)
‖h‖ = 0.

Notice the general Lagrangian form of the remainder:

Rk(x′) = f (k+1)(β)
(k + 1)! · (x

′ − x)2

where β ∈ [x,x′] and f is k + 1 times differentiable.

Notice that the Taylor’s approximation works only locally: the furthest we get
from x the more distant the function value is from the model.

Definition 2.7.15 (Second order Taylor’s model). Let f : Rn → R ∈ C1, we
define the second-order Taylor’s formula as a quadratic approximation of the
function f in a neighborhood of x. Formally, given a ball B(x, δ), ∀x′ ∈ B(x, δ)

f(x′) ≈ Qx(x′) = Lx(x′) + 1
2(x′ − x)T∇2f(x)(x′ − x) +R3(x′ − x) (2.7.2)



2.7. DERIVATIVES 33

with lim
h→0

R(h) ‖h‖2 = 0 or, equivalently, the remainder vanishes at least cubically,

or the error is O(‖x′ − x‖3) .
An equivalent form of the second order Taylor’s formula is the following

∀x′ ∈ B(x, δ) ∃α ∈ (0, 1) s.t. f(x′) = Lx(x′)+1
2(x′ − x)T ·∇2f(αx+(1−α)x′)(x′−x)

(2.7.3)

Example 2.7.4. Let f : R2 → R such that f(x) = f

(
x1
x2

)
= x1

2ex2 , as above

and ∇f(x) =
(

2x1e
x2

x1
2ex2

)
and ∇2f(x) =

(
2ex2 2x1e

x2

2x1e
x2 x1

2ex2

)
. In x =

(
1
0

)
∈ R2

we have f(x) = 1 and ∇f(x) =
(

2
1

)
.

Compute the first and second order Taylor’s models for f with α = 1.
The linear model has the following shape

L(1,0)(x1, x2) =<
(

2
1

)
,

(
x1 − 1
x2 − 0

)
> +1 = 2x1 − 2 + x2 + 1 = 2x1 + x2 − 1

And the quadratic model is

f(x′) =< ∇f
(
α·
(

2
1

)
+(1−α)x′

)
,x′−

(
2
1

)
> +f

(
2
1

)
+1

2 ·∇
2f

(
2
1

)
·

(
x′ −

(
2
1

))

Q[1,0](x1, x2) = 2x1 + x2 − 1 + 1
2 ·
(
x1 − 1, x2 − 0

)
·
(

2 2
2 1

)
·
(
x1 − 1
x2 − 0

)
= 2x1 + x2 − 1 + 1

2 ·
(
2x1 − 2 + 2x2, 2x1 − 2 + x2

)
·
(
x− 1
x2 − 0

)
= 2x1 + x2 − 1 + 1

2 ·
(

(2x1 − 2 + 2x2) · (x1 − 1) + (2x1 − 2 + x2) · x2

)
= 2x1 + x2 − 1 + 1

2 · (2x1
2 − 2x1 + 2x1x2 − 2x1 + 2− 2x2 + 2x1x2 − 2x2 + x2

2)

= 2x1 + x2 − 1 + 1
2 · (2x1

2 − 4x1 + 4x1x2 + 2− 4x2 + x2
2)

= 2x1 + x2 − 1 + x1
2 − 2x1 + 2x1x2 + 1− 2x2 + 1

2x2
2)

= x1
2 + 2x1x2 − x2 + 1

2x2
2

(2.7.4)

The Taylor’s model can be extended to the more general k-th order. Such an
expansion requires the computation of the k-th order derivatives, but ∇kf(x) is
a tensor of order k, which means computing and storing nk numbers. For k > 2
this approach is practically unfeasible.



34CHAPTER 2. MATHEMATICAL BACKGROUND FOR OPTIMIZATION PROBLEMS

As it happens often in computer science, it is important to find a good trade-
off between the complexity of the model and the accuracy of the approximation:
if the model is too simple (but efficient) the approximation is not very good;
conversely, complex and accurate approximations are computationally heavy.

Fact 2.7.14. Let f : Rn → R ∈ C1. If f is Lipschitz continuous on S ∈ Rn,
then in such set the norm of the gradient is bounded by the Lipschitz constant.

Formally, sup{‖∇f(x)‖ : x ∈ S} ≤ L. If S convex sup{‖∇f(x)‖ : x ∈
S} = L.

Moreover, we can prove

Fact 2.7.15. Let f : Rn → R ∈ C1. f is Lipschitz continuous on S ⊂ Rn iff its
Hessian is bounded on S. Formally, sup{

∥∥∇2f(x)
∥∥ : x ∈ S} ≤ L.

Fact 2.7.16. Let f : Rn → R ∈ C1. If the gradient of f is Lipschitz continuous
in all points x′ ∈ Rn that are close to x ∈ Rn, then f(x′) ≤ Lx(x′)+ L

2 ‖x
′ − x‖2.

2.8 Simple functions
In the rest of the course we will deal mostly with some linear and quadratic
approximations of the objective function. In this section, we introduce a couple
of examples and considerations on such functions.

2.8.1 Linear functions
In this scenario, f : Rn → R has the following shape: f(x) = cT x, for a fixed
c ∈ Rn.

It holds that ∇f(x) = c, ∇2f(x) = 0 and that level sets are parallel
hyperplanes orthogonal to c.

(a) Linear function (b) Level sets

Figure 2.9: Graphical example of linear function.

Such functions do not have any minima nor maxima, since they go to −∞
and +∞. Therefore, the question of where is a minimum on such functions is ill
posed and this is why we do not stick with linear models only.



2.8. SIMPLE FUNCTIONS 35

2.8.2 Quadratic functions
A quadratic function f : Rn → R is formalized as f(x) = 1

2 xTQx + qT x, for
fixed Q ∈M(n,R), q ∈ Rn. For such functions, the analytic expression for the
gradient if ∇f = Qx+ q, while the Hessian ∇2f = Q.

Example 2.8.1. Let us take q =
(

0
0

)
and three different values for Q:

• Q1 =
(

6 −2
−2 6

)
. In this case the function has the shape of a bowl and

its level sets are ellipsoids as shown in Figure 2.10(a).

• Q2 =
(

2 2
2 2

)
. This Q matrix leads to a shape that looks like a sheet held

from to opposite corners and its level sets are degenerated ellipsoids, where
one axis is elongated to +∞, as shown in Figure 2.10(b).

• Q3 =
(
−2 6
6 −2

)
. This last Q matrix induces a quadratic function which

looks like a bowl in one direction, but in the other one the bowl is turned
upside-down. The level sets are hyperboloids as shown in Figure 2.10(c).

Fact 2.8.1. Let f : Rn → R be a quadratic function with parameters Q ∈
M(n,R) and qT ∈ Rn. If Q is symmetric, then it has spectral decomposition.
Formally, it can be written as HΛH, where H is the matrix which columns are
the eigenvectors and Λ is the diagonal matrix containing the eigenvalues.

In the rest of the course we will assume for simplicity that Q is symmetric,
thanks to the following trick

xTQx = [(xTQx) + (xTQx)T ]
2 = xT [ (Q+QT )

2 ]x

that allows us to use the matrix Q+QT

2 only during implementation.

Fact 2.8.2. Let us assume that the matrix Q is non singular, or equivalently
all its eigenvalues are non 0. Then the function can be written in this form
f(x) = 1

2 x′TQx′, where x′ = x− x̄, where x̄ denotes the optimum, that is where
the gradient is 0.

Proof.

f(x) = 1
2(x− x̄)T

Q(x− x̄)

= 1
2(x +Q−1q)T

Q(x +Q−1q)

(1)= 1
2xTQx + 1

2qT
�
��Q−1
��Qx + 1

2xT
��Q�

��Q−1q + 1
2qT

�
��Q−1
��QQ

−1q

= 1
2xTQx + qx + 1

2Q
−1q



36CHAPTER 2. MATHEMATICAL BACKGROUND FOR OPTIMIZATION PROBLEMS

(a) f(x) = 1
2 xT Q1x + qx

(b) f(x) = 1
2 xT Q2x + qx

(c) f(x) = 1
2 xT Q3x + qx

Figure 2.10: Shapes and level sets of quadratics functions with Q1, Q2 and Q3
respectively.

where (1)= follows from the fact that Q is symmetric. Notice that the constant
factor 1

2Q
−1q is not important for the purposes of minimizing.

Proposition 2.8.2 allows us to look at the quadratic function without explicit
linear terms. This is a translation that brings the origin in x̄ and looses the
focus on the linear term.
Moreover, the size of the axes of the level curves is proportional to

√
1/λi, where

λi are the eigenvalues. If the eigenvalues are close to 0, then the axes get very
long, while when they are both positive and negative, we no longer have axes.

This is formalized in

Fact 2.8.3. Let f : Rn → R such that f(x) = 1
2 xTQx + qx. If the function is

a bowl the unique minimum lies in the center. Formally, if Q is positive definite
x̄ = −Q−1q is the minimum of f , while if Q is indefinite (i.e. ∃λi < 0) f is



2.8. SIMPLE FUNCTIONS 37

unbounded below.

Proof. For the first part of the theorem, using the variable change of Proposi-
tion 2.8.2 f(x) = xTQx we get that x′TQx′ ≥ 0, because Q is positive definite
and the equality is matched only in x = 0, i.e. x = x̄.

Notice that all we have said works symmetrically for quadratic functions such
that ll the eigenvalues are negative. The only difference is that we look for the
maximum in that case.

Fact 2.8.4. Let f : Rn → R be a quadratic function, let v1,v2 ∈ Rn be
orthonormal eigenvectors of f relative to eigenvalues λ1, λ2 ∈ R respectively and
let α ∈ R+ be the step size. The following holds

f(αvi) = λiα
2

Proof.

f(αvi)
(1)= (αvi)T

Q(αvi)
= α2vi

T Qvi︸︷︷︸
λivi

= α2λivi
T vi

= α2λi · ‖vi‖2

(2)= λiα
2

where (1)= follows from Proposition 2.8.2 and (2)= follows from the fact that the
eigenvectors are orthonormal.

� Do you recall?

In Section 2.5 we introduced sequences, because the iterative procedure
of starting from an initial point x0 and move towards the optimum gives
birth to a hopefully minimizing sequence {xi}.

In the field of optimization it is crucial to decide at each iteration the moving
direction as well as the step size along that particular direction.

We have already seen how a good guess for the direction d is the opposite of
the gradient, where the function decreases very fast.

Let us now consider the step size, say α ∈ R+. Intuitively, whenever we
are moving along a direction in which the function value decreases very fast
we are allowed to perform a reasonably big step, conversely α should be very
small. In the simple case of quadratic functions, resorting Proposition 2.8.5, let
us suppose we are sitting in a point such that the function value is 1, the step
size is α =

√
1

λi
.



38CHAPTER 2. MATHEMATICAL BACKGROUND FOR OPTIMIZATION PROBLEMS

Fact 2.8.5. Let f : Rn → R be a quadratic function, such that f(x) = xTQx +
qT x, where Q ∈M(n,R) and it is positive semidefinite. Then f is made of a
purely quadratic part and a linear part, formally:

f(x) = 1
2(x− x̄)T

Q(x− x̄) + q0x

where ker(Q) =< q0 >.

Proof. Thanks to the characterization theorem of Rn we know that the whole
space Rn is generated by a linear combination between a basis of the image of
matrix Q (i.e. the column space of matrix Q or, equivalently, the row space
of Q) and a basis of the kernel of matrix Q. Formally, Rn = row(Q) + ker(Q),
where row(Q) := {x = yTQ for some y ∈ Rn}; moreover, the image of Q and
the kernel are orthogonal. Therefore, any vector v ∈ Rn can be written as a
linear combination of {q1,q2, . . . ,qn−1,q0}, where q1,q2, . . . ,qn−1 are a basis
of the space spanned by the rows of Q and q0 is the basis of the kernel of Q.

Without loss of generality, in order to ease notation, let us restrict to R2 and
let us consider the row space generated by a vector called q+ and let q = q+ +q0.

Let us perform some algebra and we get the thesis:

f(x) = 1
2xTQx + qT x

= 1
2xTQx + (q+ + q0)T x

= 1
2xTQx + q+

T x + q0
T x

(1)= 1
2(x− x̄)T

Q(x− x̄) + q0
T x

where (1)= follows from Proposition 2.8.2

In Proposition 2.8.5 we proved that a quadratic function f , which quadratic
matrix Q is singular (i.e., positive or negative semidefinite), has a quadratic
shape along some directions and a linear shape along some (orthogonal) others.
Let us consider the linear part: linear functions can be written as aT x and their
gradient is ∇f(x) = a. A linear function may increase, decrease or keep constant
and in the first two cases it will diverge at the limit. If we sit in the point xi and
suppose that we move along a certain direction d, our movement can be split
into two different vectors, one along a level set (say d//) and the other orthogonal
to the level sets (say p⊥). It holds that if d⊥ 6= 0 the linear function will go to
∞ either positive or negative. The situation explained above is represented in
Figure 2.11.

It is known that in a quadratic function of the shape of f , the quadratic part
dominates the linear one, but whenever the quadratic part (xTQx) is flat - and
this happens for any x ∈ ker(Q) - the linear part is responsible for the function’s



2.8. SIMPLE FUNCTIONS 39

Figure 2.11: Level sets of a linear function.

behaviour. Formally,

f(x) = xT Qx︸︷︷︸
=0

+qT x

= 0 · xT + qT x
= qT x

It is crucial to assess for which values of q the linear function does not diverge
and this is formalized in the following

Fact 2.8.6. Let f : Rn → R be a quadratic function, such that f(x) = xTQx +
qT x, where Q ∈M(n,R) and it is positive semidefinite. Then f has a minimum
if and only if the vector q of the linear term of f lies entirely in the row space
of Q. Formally, f has minimum ⇐⇒ q0 = 0, where ker(Q) =< q0 >.

Proof. The minimum of function f corresponds to a point where the gradient
vanishes, formally x∗ such that Qx∗ + q = 0 or, equivalently, Qx∗ = −q. Here
we have the thesis, thanks to the fact that a vector (−1) · q can be written as
Qx∗ if and only if it belongs to the space spanned by the rows of matrix Q.



40CHAPTER 2. MATHEMATICAL BACKGROUND FOR OPTIMIZATION PROBLEMS



Chapter 3

Unconstrained Optimality

3.1 Unconstrained Optimization
Until now we stated that the best conditions for finding the optimum are
encountered when the domain is a compact set and we have many derivatives.

Now we need to consider when we can stop our algorithm.

Definition 3.1.1 (Unconstrained optimization problem). We term uncon-
strained optimization problem the following

(P ) f∗ = min{f(x) : x ∈ Rn}

In unconstrained optimization, we deal with an unbounded set (Rn), hence
Weierstrass theorem does not apply. Because of this reason, we have no guarantee
that a minimum x∗ exists; moreover, provided its existence, finding it is an
NP-hard problem. In order to make things easier, in practice we use a weaker
condition: local minimality.

Definition 3.1.2 (Local minimum). Let f : Rn → R. x∗ is a local minimum
if it is a global minimum in a little ball around x∗. Formally,

min{f(x) : x ∈ B(x∗, ε)}

for some ε > 0.
Moreover, x∗ is a strict local minimum if f(x∗)<f(x′) ∀x′ ∈ B(x∗, ε).

A point where the gradient is smaller or bigger than 0 cannot be a local
minimum, as shown in Figure 3.1.

Moreover, looking at the gradient we can easily tell if a point is a local
minimum, but looking at the surroundings of a point we cannot tell if such point
is a local or global minimum.

41



42 CHAPTER 3. UNCONSTRAINED OPTIMALITY

f(x)

x

(a) Points where the derivative is
not 0.

f(x)

x

(b) Points where the derivative is
0.

Figure 3.1: Minima and non minima in one dimension.

3.2 First Order Model

� Do you recall?

The first order model of f : Rn → R ∈ C1 in some B(x, δ) is Lx(x′) =
f(x) +∇f(x)T (x′ − x), such that ∀x′ ∈ Rn close to x f(x′) = Lx(x′) +
R(x′ − x), where R(·) accounts for the distance between the model and
the function, it is called residual and it has the property of more than
linear convergence: lim

‖h‖→0
R(h)
‖h‖ = 0.

In optimization, we are interested in moving towards a (local) minimum x∗
as fast as possible.
Fact 3.2.1. Let f : Rn → R be the objective function of the optimization problem
(P) and let x ∈ Rn be the current point at a generic iteration such that f ∈ C1

in some B(x, δ). In order to get closer to the optimum, we need to take a step
along the anti-gradient direction. Formally, x(α) = x− α∇f(x), where α ∈ R
is called step size.

Fact 3.2.2. Let f be differentiable, if x is a local minimum, then ∇f(x) = 0.

Proof by contraddiction. Let us assume that x is a local minimum but∇f(x) 6= 0.
We are interested in finding a scalar α such that x′ = x(α) = x − α∇f(x) is
such that f(x′) < f(x).

In our case, x′ = x− α∇f(x), so let us plug it into the remainder version of
the Tailor’s first-order model:

f(x′) = f(x)+ < ∇f(x),x′ − x > +R(x′ − x)
= f(x)+ < ∇f(x),�x− α∇f(x)−�x > +R(�x− α∇f(x)−�x)
= f(x)+ < ∇f(x),−α∇f(x) > +R(−α∇f(x))
= f(x)−α ‖∇f(x)‖2︸ ︷︷ ︸

<0

+R(−α∇f(x))



3.3. SECOND ORDER MODEL 43

At this point we need to find a small α that allows R(−α∇f(x)) < α‖∇f(x)‖2.
From the remainder version of Taylor’s formula we know that R(−α∇f(x)) goes
to 0 quadratically with respect to α, while α‖∇f(x)‖2 goes to 0 linearly in α,
hence at some point we will get the inequality needed.

Once we fixed the moving direction, we can choose the step size α, so it
can be proved that lim

α→0
R(−α∇f(x))

‖α∇f(x)‖ = 0, that is equivalent by definition to

∀ε > 0 ∃ᾱ > 0 s.t. R(−α∇f(x))
α‖∇f(x)‖ ≤ ε ∀ 0 ≤ α < ᾱ.

If we take ε < ‖∇f(x)‖, we get R(−α∇f(x)) < α ‖∇f(x)‖2, then

f(x(α)) = f(x)− α ‖∇f(x)‖2 +R(−α∇f(x)) < f(x)

∀α < ᾱ x cannot be a local minimum.

Proposition 3.2.1 states that the first order model allows to find the decreasing
direction, but if the gradient is 0 we do not know if we are in presence of a
minimum, maximum or a saddle point (called stationary points). To discriminate
among those, we exploit the information provided by the second derivative.

3.3 Second Order Model

� Do you recall?

The second order model of f : Rn → R ∈ C2 in some B(x, δ) is
Qx(x′) = Lx(x′) + 1

2 (x′ − x)T∇2f(x)(x′ − x) = f(x) + ∇f(x)T (x′ −
x) + 1

2 (x′ − x)T∇2f(x)(x′ − x), such that ∀x′ ∈ Rn close to x f(x′) =
Qx(x′) + R(x′ − x), where R(·) accounts for the distance between the
model and the function, it is called residual and it has the property of
more than quadratic convergence: lim

‖h‖→0
R(h)
‖h‖ = 0.

Property 3.3.1. Let f : Rn → R be a quadratic function, let x ∈ Rn be any
stationary point and let the Hessian be an invertible matrix, then:

• If the Hessian is positive definite then f attains a local minimum at x.

• If the Hessian is negative definite then f attains a local maximum at x.

• If the Hessian has both positive and negative eigenvalues then x is a saddle
point for f .

Thanks to second order Taylor’s model, we can approximate a function
f : Rn → R ∈ C2 using a quadratic model and so use Property 3.3.1 for checking
when a stationary point is a minimum. In particular, the gradient of Qx is
computed as ∇Qx = ∇f(x) +∇2f(x)T (x′ − x), then if x = x′ is a stationary
point ∇Qx(x) = ∇f(x) = ∇Lx(x) = 0.



44 CHAPTER 3. UNCONSTRAINED OPTIMALITY

Moreover, the Hessian of Qx is computed as Qx = ∇2f(x), hence it has the
same value of the Hessian of f .

Fact 3.3.2. Let f : Rn → R such that f ∈ C2. If x is a local minimum then
the Hessian is positive semidefinite. Formally, ∇2f(x) � 0.

Proof by contraddiction. Our contradictory hypothesis is that we are in a local
minimum, but the Hessian is not positive semidefinite, hence there is a direction
d ∈ Rn of negative curvature. Formally, ∃d s.t. dT∇2f(x)d < 0 or equivalently,
the Hessian has a negative eigenvalue λi < 0. Let us now inspect how the
function behaves moving along that direction and we will find out that the
function decreases, meaning that x was not a local minimum.

Let us consider that d has norm 1 without loss of generality and let us
be given a function of the step size step x(α) = x + αd and then take the
second-order Taylor formula as follows (where there is no linear term involved
because ∇f(x) = 0):

f(x(α)) = f(x) + 1
2(x(α)− x)T∇2f(x)(x(α)− x) +R(x(α)− x)

= f(x) + 1
2(�x + αd−�x)T∇2f(x)(�x + αd��−x) +R(�x + αd−�x)

= f(x) + 1
2(αd)T∇2f(x)(αd) +R(αd)

= f(x) + 1
2α

2dT∇2f(x)d +R(αd)

with lim
‖h‖→0

R(h)
‖h‖2 = lim

α→0
R(αd)

α2 = 0 or equivalently ∀ε > 0∃ᾱ > 0 s.t. R(αd) ≤

εα2 ∀0 ≤ α < ᾱ. Notice that the term 1
2α

2dT∇2f(x)d < 0 and R(αd) < 0 At
this point, since this condition holds for each ε we are allowed to take the most
convenient: ε < − 1

2 dT∇2f(x)d, so that we obtain this condition on the residual
R(αd) < − 1

2α
2dT∇2f(x)d, hence

f(x(α)) = f(x) + 1
2α

2dT∇2f(x)d +R(αd) < f(x)∀ 0 ≤ α < ᾱ

The contradiction lies in the fact that x(α) leads to a value of f smaller than
the one in x.

Proposition 3.3.2 states that a positive semidefinite Hessian is a necessary
condition for a local minimum. Follows a proposition that provides a sufficient
condition.

Fact 3.3.3. Let f : Rn → R s.t. f ∈ C2 and let the Hessian be symmetric
(hence real eigenvalues). If ∇f(x) = 0 and the Hessian is strictly positive definite
(∇2f(x) � 0) then x is a strict local minimum.



3.3. SECOND ORDER MODEL 45

� Do you recall?

In the notes on Numerical Methods we stated the Variational charac-
terization:
Let Q ∈ S(n,R) and let x ∈ Rn. Then

λmin‖x‖2 ≤ xTQx ≤ λmax‖x‖2

where λmax and λmin are respectively the eigenvalue of maximum value
and the eigenvalue of minimum value.

Proof. Let x ∈ Rn be a point where the gradient of the function is 0, then we
get the following second order Taylor’s approximation for xnew = x + d (unitary
step size for simplicity):

f(x + d) = f(x) + 1
2dT∇2f(x)d +R(d) with lim

h→0

R(d)
‖d‖2 = 0

Hence, by definition of limit ∀ε > 0 ∃ δ > 0 s.t. R(d) ≥ −ε ‖d‖2 ∀d ∈ Rn s.t.
‖d‖ < δ.

Since the Hessian is strictly positive definite, the smallest eigenvalue λmin
is strictly greater than 0, hence the variational characterization of eigenvalues
dT∇2f(x)d ≥ λmin ‖d‖2.

We are now ready to pick the ε we prefer (i.e. ε <
λmin

2 ) to get ∀d s.t.
‖d‖ < δ that the function value in any other point close to x is greater:

• dT∇2f(x)d ≥ λmin ‖d‖2

• R(d) ≥ −ε‖d‖2

f(x + d) = f(x) + 1
2dT∇2f(x)d +R(d) ≥ f(x) + (λmin

2 − ε)‖d‖2
> f(x)

Where the term λmin − ε is strictly positive.

Definition 3.3.1 (Strong local optimality). Let f : Rn → R and let x ∈ Rn a
solution of the minimum problem (P). We say that x is a strong local optimum
if f grows at least quadratically. Formally,

∃δ > 0 and γ > 0 s.t. f(x′) ≥ f(x) + γ‖x′ − x‖2 ∀x′ ∈ B(x, δ)

There are some points, called saddle points (Figure 3.7), where both the
first and the second order derivative do not give any information about the
shape of the function and the third order derivatives are required to infer such
information.
In the rest of this lecture, we will provide conditions that ensure that once a
local minimum is found, it is also a global minimum, namely that the function
does not look like the one in Figure 3.1.



46 CHAPTER 3. UNCONSTRAINED OPTIMALITY

f(x)

x

Figure 3.2: Saddle point.

So far, we said that the local minima are those points where the gradient
is 0 and the Hessian is positive semidefinite. An easy way to ensure that the
Hessian is positive semidefinite in a ball around x is to have that the Hessian
is positive semidefinite everywhere (∀x ∈ Rn), that actually means that there
are no local maxima and this is guaranteed to be true whenever f is a convex
function, as the one displayed in Figure 3.3.

f(x)

x

Figure 3.3: Convex function.

As the reader may know, in machine learning (which is one of the subjects
to which the tools of optimization are applied) there is the need of choosing the
class of functions the model belongs to. At this step, it is preferable to select a
function which is convex, for the reasons explained above.

3.4 Convexity

Let us introduce convexity as far as both sets and functions are concerned.



3.4. CONVEXITY 47

3.4.1 Convex sets
Definition 3.4.1 (Convex hull). Let x,y ∈ Rn we term convex hull and
denote conv(x,y) = {z = αx + (1−α)y : α ∈ [0, 1]} the segment joining x and
y.

Definition 3.4.2 (Convex set). Intuitively, we say that C is a convex set if
for each couple in the set, the line joining such points belongs to the set.
Formally, C ⊂ Rn is a convex set if ∀ x,y ∈ C conv(x,y) ⊆ C.

x

y

(a)

x

y

(b)

x y

(c)

x

y

(d)

x

y

(e)

x y

(f)

Figure 3.4: Some examples of convex sets.

Notice that “disconnected sets” cannot be convex sets, as an example see
Figure 3.5.

x y x y

Figure 3.5: Non connected, hence non convex sets.

In general, it is more likely to deal with a set that is non convex instead of a
convex one. In this case we can make use of a trick that somehow “completes”



48 CHAPTER 3. UNCONSTRAINED OPTIMALITY

the non convex set into a convex one, as shown in Figure 3.6 and formalized in
Definition 3.4.3.

Definition 3.4.3 (Convex hull of a set). Given a set S ⊆ Rn, we can “com-
plete” it to a convex set conv(S), called convex hull of S, using two different
approaches: one is to add all the segments joining any possible couple of points in
S, the other one is to choose the smallest convex set that contains S. Formally,

conv(S) =
⋃
{ conv(x,y) : x,y ∈ S }

=
⋂
{C : C is convex ∧ C ⊇ S }

Equivalently, the convex hull of S can be defined iteratively as the convex hull of
all the couples of points in S.
Equivalently, we can define the convex hull of a set S as the smallest convex set
containing S.

(a) (b) (c)

Figure 3.6: How to merge two disjoint sets into a convex one.

� Note

A more general definition of a convex hull is the following:

conv({x1, . . . ,xk}) =
{

x =
k∑

i=1
αixi :

k∑
i=1

αi = 1, αi ≥ 0 ∀i
}

Definition 3.4.4 (Unitary simplex). We term unitary simplex the set of k
non-negative scalars summing to 1, formally

Θk = {
k∑

i=1
αixi ∈ Rk :

k∑
i=1

αi = 1, αi ≥ 0 ∀i}

Our goal is to find the simplest possible convex set that approximates our set.

Fact 3.4.1. A convex set is equal to its convex hull. Formally,

C is convex ⇐⇒ C = conv(C)



3.4. CONVEXITY 49

(a) In R2 (b) In R3

Figure 3.7: Example of unitary simplexes.

Fact 3.4.2. A set C ⊆ Rn is convex iff for any possible choice of its elements,
their convex hull is contained in C. Formally,

C is convex ⇐⇒ C ⊇ conv({x1,x2, . . . ,xk}) ∀x1,x2, . . . ,xk ∈ C

We are interested in sufficient conditions for convexity. In the rest of this
lecture we are going to define some basic sets that are convex and then we will
see some operations that preserve convexity.

In this way we can try to reconstruct a set as originated from some convex
set via some allowed manipulations.

Definition 3.4.5 (Cone). We term cone the set C = {x ∈ Rn : αx ∈ C∀α ≥
0}.

An attentive reader may notice that the definition of cone is a relaxation of the
unitary simplex, where we do not require the unitary sum.

Example 3.4.1. The following sets are convex:

• Convex polytope conv( {x1, . . . ,xk} ), unitary simplex Θ

• Affine hyperplane: H := {x ∈ Rn : aT x = b}

• Affine close (open) subspace: S := {x ∈ Rn : aT x ≤ (<)b}

• Close (open) ball of radius r in p-norm, p ≥ 1: Bp(x, r) = {y ∈ Rn : ‖y− x‖p ≤
(<)r}

• Close (open) ellipsoid: E(Q,x, r) := {y ∈ Rn : (y− x)T
Q(y−x) ≤ (<)r}

with Q � 0. Notice that ellipsoids are levelsets of quadratic functions.

• Cones

• Conical hull of a finite set of directions:

cone({d1, . . . ,dk}) =
{

d =
k∑

i=1
µidi : µi ≥ 0 ∀ i

}



50 CHAPTER 3. UNCONSTRAINED OPTIMALITY

• Lorentz’s cone (ice-cream cone): L =
{

x ∈ Rn : xn ≥
√∑n−1

i=1 xi
2
}

• Cone of positive semidefinite matrices: S+ = {A ∈M(n,R) : A � 0}

Fact 3.4.3. The following operations preserve convexity.

1. Given a possibly infinite family of convex sets ({Ci}i∈I), the intersection
(
⋂

i∈I Ci) is convex;

2. If we have convex sets in different subspaces, their Cartesian product is a
convex set (C1, . . . , Ck convex ⇐⇒ C1 × · · · × Ck convex);

3. Given a convex set, its image under a linear mapping (i.e. scaling, trans-
lation, rotation) is a convex set. Formally, let C be a convex set. Then
A(C) := {x = Ay + b : y ∈ C} for a given A ∈M(n,R) and b ∈ Rn is
convex;

4. If C is a convex set its inverse image under a linear mapping is convex as
well. Formally, A−1(C) := {x : Ax + b ∈ C} is convex;

5. A linear combination of convex sets is convex. Formally, let C1 and C2 be
convex sets and let α1, α2 ∈ R, then α1C1 + α2C2 := {x = α1x1 + α2x2 :
x1 ∈ C1,x2 ∈ C2} is convex;

6. Let C ⊆ Rn1 ×Rn2 be a convex set. Slicing and projection lead to convex
sets as well, as shown in Figure 3.8:

Slice: Cs(y) := {x ∈ Rn1 : (x,y) ∈ C} is convex
Projection: Cp := {x ∈ Rn1 : ∃y ∈ Rn2 s.t. (x,y) ∈ C} is convex

7. Given a convex set C, the interior of such set and its closure are convex.

y

x

ȳ

(a) Slice on ȳ

y

x

(b) Project on the x component

Figure 3.8: Pictorial examples of slicing and projecting.

Fact 3.4.4. The union of convex sets is not convex.

Proof. Let us provide a counter-example to this fact. Let us choose intervals
in R for simplicity: [0, 1] and [2, 3] are both convex, because they satisfy the
definition, but their union has a “gap”, hence t ·1+(1− t) ·2 is not in [0, 1]∪ [2, 3]
for any t ∈ (0, 1).



3.4. CONVEXITY 51

Definition 3.4.6 (Polyhedron). Let A ∈M(m,n,R) and let b ∈ Rm, we term
polyhedron P := {x ∈ Rn : Ax ≤ b}.
Fact 3.4.5. A polyhedron is convex.
Fact 3.4.6. Let P ⊆ Rn be a polyhedron. Its recession cone is a cone. Formally,

R := {d : x + αd ∈ P ∀x ∈ P, α ≥ 0}

is a cone.
Proof.

∀d ∈ R βd ∈ R︸ ︷︷ ︸
m

∀β ≥ 0

x + αβd ∈ P
m

A(x + αβd) ≤ b
m

Ax + αβAd ≤ b

If we pick α′ = αβ we get the thesis.

Theorem 3.4.7. P is a polyhedron iff any of its points can be written as
a combination of a point in a convex set and one in a cone. Formally, iff
∃{x1, . . . ,xk} ⊆ Rn and {d1, . . . ,dh} ⊆ Rn s.t. P = conv({x1, . . . ,xk}) +
cone({d1, . . . ,dh}).

3.4.2 Convex functions
In the rest of this lecture we will introduce the class of convex functions, that
have the characteristic of having local minima coinciding with global minima.
Definition 3.4.7 (Graph). Let f : Rn → R, we term graph of f the set of
ordered pairs (x, y) such that f(x) = y.
Definition 3.4.8 (Epigraph). Let f : Rn → R, we term epigraph or super-
graph of f the set of points lying on or above its graph. Formally,

epi(f) = {(x, µ) : x ∈ Rn, µ ∈ R, µ ≥ f(x)} ⊆ Rn+1

Definition 3.4.9 (Convex function). Let f : Rn → R be a function. We say
that f is convex if ∀x,y ∈ Rn, the segment that joins f(x) and f(y) lies above
the function.
In other words, f is convex iff epi(f) is convex.
Equivalently, we say that f is convex if ∀x,y ∈ dom(f) for any α ∈ [0, 1],
αf(x) + (1− α)f(y) ≥ f(αx + (1− α)y), as depicted in Figure 3.9.
Equivalently, ∀x1, . . . , xk, α ∈ Θk

f

(
k∑

i=1
αixi

)
≤

k∑
i=1

αif(xi)



52 CHAPTER 3. UNCONSTRAINED OPTIMALITY

f(x)

x y

f(y)

f

x+(1-  )y

x+(1-  )y)f(
+(1-  )f(x) f(y)

Figure 3.9: Given two points x, y ∈ R the function value of any of the points
lying inside the interval ]x, y[ is below the value of a linear function that passes by
(x, f(x)), (y, f(y)), hence the function is strictly convex.

Definition 3.4.10 (Strict convexity). Let f : Rn → Rm. We term f strictly
convex iff αf(x) + (1− α)f(y) > f(αx + (1− α)y).

Notice that a linear function is convex but not strictly convex.

Definition 3.4.11 (Concave function). Let f : Rn → R be a function. We say
that f is concave if ∀x,y ∈ Rn, the segment that joins f(x) and f(y) lies below
the function. Formally, ∀x,y ∈ dom(f) for any α ∈ [0, 1], αf(x)+(1−α)f(y) ≤
f(αx + (1− α)y).

Definition 3.4.12 (Sublevel graph). Let f : Rn → Rm be a function. We term
sublevel graph of f on a scalar v ∈ R and denote S(f, v) the projection on the
x axis of the portions of the graph of f which lie below the constant value v.

Fact 3.4.8. The following holds:

• Let f convex. Then S(f, v) is convex ∀v ∈ R;

• f is concave if −f is convex.

J Mantra

Convex analysis is a one-sided world, that means that the arrows in
propositions flow in one way only.

The second statement of Proposition 3.4.8 is useful to make a comparison
between minimizing and maximizing. In particular, if our aim is to maximize
the function, we can be sure to have found a global maximum if the function is
concave.



3.4. CONVEXITY 53

x

y

v = 2

Figure 3.10: f(x) = x5 − 8x3 + 10x + 15 in blue and its sublevel graph in orange.

Definition 3.4.13 (Strong convexity). Let f : Rn → R. We term f strongly
convex if exists a quadratic function that lies below f , that means that the
function grows quadratically. Formally, we say that f is strongly convex
modulus a scalar τ > 0 iff f(x)− τ

2 ‖x‖
2 is convex. Equivalently, f is strongly

convex modulus a scalar τ > 0 iff

αf(x) + (1− α)f(y) ≥ f(αx + (1− α)y) + τ

2α(1− α) ‖(y− x)‖2

In the next paragraphs we will provide techniques that allow to check if a
function is convex in practice, hence where a local minimum is also a global
minimum.

As we already stated for convex sets, we can prove that a function is convex
if we are able to derive it from convex functions, through “convex friendly”
operations.

Note

In order to have insights about convexity we can use the software
called CVX, designed to model convex objects. A pretty easy way to check
if an object is convex is to try to write it in CVX. If such an operation is
possible, then the object is convex.

Let us enumerate some convex functions:

Linear functions: f(x) = wT x (they are both convex and concave);

Quadratic functions: f(x) = 1
2 xTQx + qT x is convex iff Q � 0;

Exponential function: f(x) = eax for any a ∈ R and x ∈ Rn



54 CHAPTER 3. UNCONSTRAINED OPTIMALITY

Anti-logaritmic function: f(x) = − log(x) for x > 0

Monomial: f(x) = xa for a ≥ 1 or a ≤ 0 on x ≥ 0;

p-norm: f(x) = ‖x‖p for p ≥ 1;

Maximum: f(x) = max{x1, . . . , xn};

Indicator function: for any convex set C, its indicator function 1C(x) is
convex:

1C(x) =
{

0 if x ∈ C
+∞ if x /∈ C

Sum of m largest eigenvalues: Let A ∈ S(n,R) such that its eigenvalues
(sorted in increasing order) are λ1 ≥ λ2 ≥ . . . λn. fm(A) =

m∑
i=1

λi is
convex.

Fact 3.4.9. The following operations preserve convexity:

Linear non-negative combination: let f, g : Rn → R be convex functions
and let α, β ∈ R+, then αf + βg is convex;

Supremum: let {fi}i∈I be a set of infinitely many convex functions, then
sup
i∈I

fi(x) is convex, see Figure 3.11(a);

Pre-composition with linear function: let f : Rn → R be a convex func-
tion and let A ∈M(m,n,R),b ∈ Rm, then f(Ax + b) is convex;

Post-composition with increasing convex function: let f : Rn → R

be a convex function and let g : R → R be a convex increasing function.
Then g ◦ f = g(f(x)) is convex;

Infimal convolution: let f1, f2 : Rn → R be convex functions. Then
f(x) = inf{f1(x1) + f2(x2) : x1 + x2 = x} is convex;

Image under linear mapping: let g : Rn → R be a convex function. Then
f(x) = inf{g(y) : Ay = x} is convex;

Partial minimization: let g
(

x
y

)
: Rn+m → R be a convex function. Then

f(x) = inf
{
g

(
x
y

)
: y ∈ Rm

}
is convex;

Perspective or dilation: let f : Rn → R be a convex function. Then

f̃(x, u) =
{
u · f(x/u) if u > 0
∞ otherwise

is convex, see Figure 3.11(b).



3.4. CONVEXITY 55

(a) Supremum (b) Perspective

Figure 3.11: Examples of convexity-preserving operations.

Fact 3.4.10. Let f : Rn → R∪{∞} be a convex function. If ∃x̄ ∈ dom(f) such
that f(x̄) = −∞, then f ≡ −∞.

� Note

As we did in the case of functions which domain is not the whole R, from
now on we will solve the issue of functions with a non convex domain,
saying that in those points where the function is not defined, we value is
+∞.

� Do you recall?

Let us paste here the definition of lower semi-continuity presented in
Definition 2.6.3.
Let {xi} ⊆ Rn be a sequence with accumulation point in x and let
f : Rn → R. f is lower semi-continuous (l.s.c.) at x if f(x) ≤
lim inf

i→∞
f(xi).

Equivalently, lim inf
y→x

f(y) ≥ f(x), lim sup
y→x

f(y) ≤ f(x).

Example 3.4.2. Let us take a set X ⊆ R and its characteristic function 1X .
Such function is lower semi-continuous.

Fact 3.4.11. In minimization we have that any closed convex function f is also
at least lower semi-continuous and continuous in the interior of its domain (i.e.
far from the points where the function value shuts up to +∞).

Fact 3.4.12. Let f : Rn → R be a convex function. Then f is Lipschitz contin-
uous on each bounded convex set S ⊆ int(dom(f)), but we have no information
on the behaviour on the border of the domain.

Moreover, a function f , which is continuous but not Lipschitz continuous is
not convex.



56 CHAPTER 3. UNCONSTRAINED OPTIMALITY

Figure 3.12: 1X on the codomain R̄.

(a) On a compact set in the inte-
rior of the domain (far from the
boundaries) the function is Lips-
chitz continuous.

(b) If a function is not Lipschitz on a com-
pact subset it is not convex. In this case
limx→0 f ′(x) = ∞.

Figure 3.13

A couple of examples of Proposition 3.4.12 can be found in Figure 3.13.

Fact 3.4.13. Let f : Rn → R be a convex function. Then it is Lipschitz
continuous on any bounded set and continuous everywhere.

It happens often that the set of points in which a function is non differentiable
has measure 0.

3.5 Convexity and Higher Order Information

In this section we would like to provide equivalent definitions of convexity,
provided that the function is continuously differentiable (f ∈ C1).

Theorem 3.5.1 (Convexity characterization). Let f : Rn → R be in C1. It is
convex on a convex set C ⊆ Rn iff the value of the function lies above the first
order model (see Figure 3.14). Formally,

f(y) ≥ f(x) +∇f(x)T (y− x) ∀x,y ∈ C



3.5. CONVEXITY AND HIGHER ORDER INFORMATION 57

x

f

f(x)+   f(x)(y - x)

Figure 3.14: The epigraph is an half-space that contains that of f epi(Lx) ⊇ epi(f)

� Do you recall?

In the proof of the previous theorem we need the result presented in Sec-
tion 2.7, in Proposition 2.7.11, where we derived the directional derivative
from the gradient as ∂f

∂d (x) =< ∇f(x),d >.

Proof. ⇒) Let us write the definition of convexity:

αf(y) + (1− α)f(x) ≥ f(αy + (1− α)x)
αf(y) + f(x)− αf(x) ≥ f(αy + x− αx)

α
(
f(y)− f(x)

)
+ f(x) ≥ f

(
α(y− x) + x

)
α
(
f(y)− f(x)

)
≥ f

(
α(y− x) + x

)
− f(x)

f(y)− f(x) ≥
f
(
α(y− x) + x

)
− f(x)

α︸ ︷︷ ︸
(∗)

where (∗) is the incremental ratio of the directional derivative:

lim
α→0

f
(
α(y− x) + x

)
− f(x)

α
= ∂f(x)
∂(y− x)

(1)=< ∇f(x),y− x >

where (1)= holds because f ∈ C1.
The thesis follows from a couple of passages, for α→ 0:

f(y)− f(x) ≥< ∇f(x),y− x >

f(y)− f(x) ≥ ∇f(x)T (y− x)
f(y) ≥ f(x) +∇f(x)T (y− x)



58 CHAPTER 3. UNCONSTRAINED OPTIMALITY

Notice that if x ∈ Rn is a local minimum, then ∇f(x) = 0, hence f(y) ≥
f(x) ∀y ∈ Rn. Therefore, x is a global minimum and we proved the following
Corollary 3.5.2. Let f : Rn → R in C1 be a convex function. x ∈ Rn is a
stationary point for f iff x is a global minimum.

Fact 3.5.3. Let f : Rn → R be twice continuously differentiable (f ∈ C2). f is
convex on an open set S ⊆ Rn iff the Hessian is positive semidefinite.

Moreover, f is strictly (strongly) convex iff ∇2f(x) � 0 (∇2f(x) ≥ τI).

This proposition gives us an algorithm to checc k if a function is convex or
not: we only need to compute the eigenvalues of the Hessian and check if they
are positive.

There are some functions which do not have differentiability property and
for those who are interested there is a section in ??.

A way to work with functions which are not defined on all Rn is to solve the
following problem:

(P ) ≡ inf{fX(x) = f(x) + 1X(x) : x ∈ Rn}
thanks to the following

Theorem 3.5.4 (Essential objective). x∗ optimal for (P ) ⇐⇒ x∗ local mini-
mum of fX .

So far, we provided two different approaches for checking if a function
is convex: one requires to derive the function from some basic, continuous
functions using the operations allowed. Conversely, we can make use of higher
order information when it is possible and check some properties, thanks to
characterization theorems.

3.6 Subgradients and Subdifferentials
Definition 3.6.1 (Subgradient). Let f : Rn → R. We say that s ∈ Rn is a
subgradient of f at point x ∈ Rn if ∀y ∈ Rn the following holds:

f(y) ≥ f(x) + s(y− x)

Let us assume that the minimum of the non differentiable function resides in
one of its kinky points, then for s = 0 we have a subgradient which is flat and this
is a sufficient condition for minimality, for a pictorial example see Figure 3.15.

The issue here is that it is unfeasible to check if s = 0 is a subgradient for f ,
since we should check all possible y ∈ Rn.
Definition 3.6.2 (Subdifferential). Let f : Rn → R and let x ∈ Rn. We call
subdifferential the set of all possible subgradients at x ∈ Rn.

Formally,

∂f(x) := {s ∈ Rn : s is a subgradient at x}



3.6. SUBGRADIENTS AND SUBDIFFERENTIALS 59

f ∞

x
f(x)+0(y-x)

Figure 3.15: Pictorial example of subgradients of a non diffrentaible function.

Definition 3.6.3 (Descent direction). Let f : Rn → R and let x ∈ Rn. We say
that d ∈ Rn is a descent direction if < s,d >< 0 ∀ s ∈ ∂f(x).

Theorem 3.6.1. Let f : Rn → R. x global minimum ⇐⇒ 0 ∈ ∂f(x).

Notice that in general, when we are not in proximity of a border (where f is
unbounded above) we get that the subdifferential is a compact interval.

Formally,∂f(x) closed and convex, compact ∀x ∈ int dom(f).
Moreover, we can prove the following

Fact 3.6.2. Let f : Rn → R.

∂f(x) = {∇f(x)} ⇐⇒ f differentiable at x

The following fact tries to provide a similar characterization of the subdiffer-
ential.

Fact 3.6.3. Let f : Rn → R and let x ∈ Rn. If ∂f
∂d (x) = sup{< s,d > : s ∈

∂f(x)} then d is a descent direction ⇐⇒ < s,d >< 0 ∀ s ∈ ∂f(x).

As in the differentiable case, we are interested in moving in the steepest
descent direction, formally s∗ = −argmin{‖s‖ : s ∈ ∂f(x)}.

Fact 3.6.4 (Linearity of subdifferential). Let f, g : Rn → R and take α, β ∈ R+,
then ∂[αf + βg](x) = α∂f(x) + β∂g(x).

Fact 3.6.5 (Chain rule). Let f : Rn → R.

• Let A ∈M(n,R) and b ∈ Rn then ∂[f(Ax + b)] = AT [∂f ](Ax + b);

• Let g : R→ R be an increasing function. Then ∂[g(f(x))] = [∂g](f(x))[∂f ](x).

Definition 3.6.4 (ε-subgradient). Let f : Rn → R. We say that s ∈ Rn is
ε-subgradient at x ∈ Rn if it defines a support hyperplane passing ε below
epi(f). Formally,

f(y) ≥ f(x) + s(y− x)− ε ∀y ∈ Rn



60 CHAPTER 3. UNCONSTRAINED OPTIMALITY

Fact 3.6.6. Let f : Rn → R and let x ∈ Rn. Saying that 0 ∈ Rn is a ε-
subgradient for f in x means that the function value f(x) cannot be at distance
grater than ε from the minimum f(x∗).

Formally, 0 ∈ ∂εf(x) ⇐⇒ x is ε-optimal.

We are now allowed to compute s∗ = argmin{‖s‖ : s ∈ ∂εf(x)}.
If s∗ = 0 then x is ε optimal. Otherwise, ∃α > 0 s.t. f(x− αs∗) ≤ f(x)− ε

(−s∗ is of ε-descent).
The ε-subgradient is very powerful, but the issue is that is even more expensive

to compute than the subgradient.



Chapter 4

Unconstrained
Optimization

� Do you recall?

We are interested in finding the minimum of a function through an
iterative procedure, such that we start from an initial guess x0 and go on
(xi  xi+1). We want to move towards the optimum.
Notice that with xi ∈ Rn we refer to the point x at i-th iteration.

In general, when we talk about optimization we need to carefully choose a
starting point x0 that will determine the behaviour of the convergence. Moreover,
we will stop whenever a stationary point is encountered, but such point is
guaranteed to be a global minimum only if the objective function is convex.
Notice that a minimizing sequence {xi} may not lead to a minimum, because
the codomain is unbounded, therefore we need to converge to an accumulation
point.

How to be sure that we are in an optimum?

• (strong) {xi} → x∗: the whole sequence converges to an optimal solution;

• (weaker) all accumulation points of {xi} are optimal solutions;

• (weakest) at least one accumulation point of {xi} is optimal.

The iterative process of moving from a point xi to xi+1, that is supposed to
have a lower function value can be held in two different ways:

line search: first choose the direction of the movement di ∈ Rn, then choose
αi ∈ R (that we term stepsize or equivalently “learning rate”) s.t. xi+1 ←
xi + αidi;

61



62 CHAPTER 4. UNCONSTRAINED OPTIMIZATION

trust region: first choose αi (that we call trust radius and somehow indicates
the ball in which we think that the information that we have is accurate),
then choose di.

In both these alternatives, it is crucial to choose a proper model to approximate
the objective function f . The simplest model we can build is a linear one, namely
Li(x) = Lxi(x) = f(xi) +∇f(xi)T (x− xi) and find the direction along the one
the model decreases the most, provided that we are reasonably sure that the
model approximates well the function around the current point xi.

The first order information is accurate only around xi and this is why we
should not move too far from xi, so we want a step size αi → 0.

In the following sections, we will dig into the so-called gradient descent
algorithms, where we pick the steepest descent direction as

di = arg min
d

{
lim
t→0

f(x + td)
t

}
= −∇f(xi) (SDQ: direction)

Notice that a too short step is bad either, because the gain in the value of the
function is very little.
Alternatively, we can choose to pick a different step size at each iteration by
solving a “small” minimization problem at each iterate:

αi = arg min
α≥0

f(xi + αdi) (SDQ: step size)

Notice that choosing linear functions to approximate the objective function in a
point x has the drawback that linear functions are unbounded below.

In the following section we present the steepest descent algorithm in the
simple case of quadratic objective functions that are the easiest kind of objective
functions that one can study.

4.1 Gradient Method for Quadratic Functions
In this section, we will deal with the following optimization problem (P), where
f : Rn → R is a quadratic function and it is formalized as

f(x) = 1
2xTQx + qT x

where Q � 0, otherwise f could be unbounded below (as stated in Proposi-
tion 2.8.3).
The minimum is the point in which the gradient (∇f(x) = Qx + q) is 0. Such
condition, whenever Q is non singular, is reached in x = Q−1q, but solving a
linear system requires O(n3) and this is why we introduce an iterative method
for computing the optimum.
A formalization of the gradient descent algorithm for quadratic functions can be
found in Algorithm 4.1.1.



4.1. GRADIENT METHOD FOR QUADRATIC FUNCTIONS 63

Algorithm 4.1.1 Pseudocode for Steepest Descent method for de-
tecting the minimum of Quadratic functions.

1: procedure SDQ(f,x, ε)
2: while (‖∇f(x)‖ > ε) do
3: d← −∇f(x);
4: α← ‖d‖2

dT Qd ;
5: x← x + αd;
6: end while
7: end procedure

As usual, we need to choose an error threshold ε under the one we feel allowed
to believe that the optimum has been reached and then we can stop; we set it as
the norm of the gradient. The algorithmic parameter ε could be provided by the
stakeholder, because he knows how accurate the answer needs to be.

In Algorithm 4.1.1 we can see that the step size α is computed using a closed
formula, instead of the minimum problem of Equation (SDQ: step size). How is
that formula obtained? Let us define ϕ : R→ R s.t. ϕ(α) = f(xi +αdi), we are
looking for the minimum of that function ϕ:

min
α
ϕ(α) = min

α
f(xi + αdi)

= min
α

1
2(xi + αdi)T

Q(xi + αdi) + qT (xi + αdi)

= min
α

1
2xiT

Qxi + 1
2xiT

Qαdi + 1
2αdiT

Qxi + 1
2αdiT

Qαdi + qT xi + αqT di

(1)= min
α

1
2xiT

Qxi + αxiT
Qdi + 1

2α
2diT

Qdi + qT xi + αqT di

(2)= min
α
αxiT

Qdi + 1
2α

2diT
Qdi + αqT di

= 1
2α

2diT
Qdi + min

α
αxiT

Qdi + αqT di

= min
α

((
1
2diT

Qdi
)
α2 + α ·

(
xiT

Q+ qT

)
di

)

where (1)= is due to the fact that Q is symmetric and (2)= follows from the fact
that 1

2 xiT
Qxi and qT xi are constant with respect to α. We need to minimize

the quadratic function in one variable of the shape ϕ(α) = aα2 + bα, where
a = 1

2 diT
Qdi and b = diT (Qxi + q). We know that the minimum of ϕ can be

found imposing the derivative (ϕ′(α) = 2aα+b) to 0: 2aα+b = 0 ⇐⇒ α = − b
2a ,

hence:



64 CHAPTER 4. UNCONSTRAINED OPTIMIZATION

α = −diT (Qxi + q)
�2 1
�2

diT
Qdi

(1)= −diT (−di)
diT

Qdi

=
∥∥di
∥∥2

diT
Qdi

where (1)= follows from the fact that we chose di as the anti-gradient. Notice
that the computational complexity of each step of Algorithm 4.1.1 is O(n2) for
computing the descent direction di and O(n2) for choosing the step size αi.

Notice that steepest descent method generates points that move along orthog-
onal directions, as depicted in Figure 4.1 and formalized in Proposition 4.1.1.

Figure 4.1: Some iterations of the gradient method

Fact 4.1.1. Let f : Rn → R be a quadratic function and let us consider the
gradient descent algorithm for minimizing f , where at iteration i the moving
direction di ∈ Rn and the step size αi ∈ R are computed. The following holds:
< di,di+1 > = 0.

Proof. Let us rewrite di+1 in terms of di:

di+1 := −∇f(xi+1)
= −Qxi+1 − q
= −Q(xi + αidi)− q
= −Qxi −Qαidi − q
= di −Qαidi



4.1. GRADIENT METHOD FOR QUADRATIC FUNCTIONS 65

If we plug this into the scalar product < di,di+1 > we get

< di,di+1 > =< di,di −Qαidi >

=
∥∥di∥∥2 − diT

Qαidi

=
∥∥di∥∥2 − αidiT

Qdi

*=
∥∥di∥∥2 −

∥∥di
∥∥2

��
��diT
Qdi

·����diT
Qdi

= 0

where *= follows from αi :=
∥∥di
∥∥2

diT Qdi .

Fact 4.1.2. Let us take a minimum problem (P) such that {xi} converges to x.
Then x is a stationary point for the function f .

Proof. We know that di ⊥ di+1, hence < ∇f(xi),∇f(xi+1) >= 0. The thesis
follows from

lim
i→∞

< ∇f(xi),∇f(xi+1) >︸ ︷︷ ︸
0

=< ∇f(x),∇f(x) >

Moreover, the following (that we won’t prove) holds.

Fact 4.1.3. Let us take a minimum problem (P) such that {xi} has an accumu-
lation point x. Then x is also a stationary point for the function f .

Efficiency

In the rest of this lecture we are going to assess the convergence speed of this
algorithm.
In general, showing how fast

∥∥xi − x∗
∥∥ decreases is more involved that showing

how fast f(xi) − f∗ decreases, but we do not know f∗. We concentrate on
computing lim

i→∞
f(xi+1)−f∗
f(xi)−f∗

p = R. In principle an algorithm is fast whenever the
gap between f(i+1) and f∗ decreases rapidly. According to the values of p and
R we get the following alternatives (displayed in Figure 4.2):

Sublinear: p = 1, R = 1;

Linear: p = 1, R < 1;

Superlinear: p = 1, R = 0;

Quadratic: p = 2, R > 0.



66 CHAPTER 4. UNCONSTRAINED OPTIMIZATION

Figure 4.2: Some values of the convergence speed on a logarithmic scale.

Fact 4.1.4. Suppose that we are using an algorithm that converges linearly. It
converges at an error of ε > 0 in O(log(1/ε)).

Let us compute algebraically the function value in the optimum (x∗ = −Q−1q,
when Q is non singular):

f(x∗) = 1
2(−Q−1q)T

Q(−Q−1q)− qTQ−1q

= 1
2qTQ−1T

��Q�
��Q−1q − qTQ−1q

(*)= 1
2qTQ−1q − qTQ−1q

= −1
2qTQ−1q

where *= follows from the fact that Q is symmetric.

At this point, we need to assess the convergence speed of the algorithm, thus
we need to define an error function f̄ , such that “the error at x is the distance
between x and x∗ in ‖·‖Q”:

Rispetto alle slide, qui denoto con f̄(·) la funzione che quantifica l’errore,
anzichè chiamarla f∗(·), perchè questa seconda notazione si confonde con f∗
(senza argomento), che è il valore ottimo della funzione obiettivo.



4.1. GRADIENT METHOD FOR QUADRATIC FUNCTIONS 67

f̄(x) (1)= 1
2(x− x∗)T

Q(x− x∗)

= 1
2xTQx + 1

2x∗
TQx∗ − xT (Qx∗)

(2)= 1
2xTQx + 1

2(Q−1q)T
Q(Q−1q)− xT

��Q(���−Q−1q)

= 1
2xTQx + 1

2Q
−1qT

Q(Q−1q) + qT x

= 1
2xTQx + 1

2qT
���Q−1

��QQ
−1q + qT x

= 1
2xTQx + 1

2qTQ−1q + qT x

= 1
2xTQx + qT x + 1

2qTQ−1q

= f(x)− f(x∗)

(4.1.1)

where (1)= follows from Proposition 2.8.2 because we translated the origin in
the minimum and (2)= follows from the equality x∗ = −Q−1q.

� Do you recall?

The family of quadratic functions is the simplest possible family of
functions where a minimum exists. A quadratic function is defined as:
f(x) = 1

2 xTQx + qT x, so its gradient is computed as ∇f(x) = Qx + q.
We are interested in finding local minima of the function f .

Let us go back to the error function

f̄(xi+1) = f(xi+1)− f∗ = 1
2(xi+1 − x∗)T

Q(xi+1 − x∗)

The (i+ 1)th iteration is computed as

xi+1 = xi + αidi

(a)= xi +
∥∥di
∥∥2

diT
Qdi

di

(b)= xi +
∥∥−Qxi − q

∥∥2

(−Qxi − q)T
Q(−Qxi − q)

where (a)= follows from the definition αi :=
∥∥di
∥∥2

diT Qdi and (b)= from the fact that the
moving direction is the opposite of the gradient (formally, di = −Qxi − q).

This means not only linear convergence, but a bit more, because linear
convergence only takes into consideration steps in proximity to the limit, while
this formula holds at the beginning as well.



68 CHAPTER 4. UNCONSTRAINED OPTIMIZATION

Fact 4.1.5. Let A ∈ M(n,R) be a positive semidefinite matrix. ∀v ∈ Rn

vTAv = ‖v‖2
A.

Fact 4.1.6. Let us consider a minimum problem (P) where the objective function
is quadratic. In the setting of a gradient descent method if Q is positive definite
the error decreases by a constant factor at each iteration. Formally, if Q � 0

we can say that the error goes like 1 −
( ∥∥di

∥∥4

(diT Qdi)(diT Q−1di)

)
or, equivalently,

1−
∥∥di
∥∥

I

2

‖di‖Q
2 ·

∥∥di
∥∥

I

2

‖di‖Q−1
2 .

Fare proof, f̄(xi+1) = 1−
( ∥∥di

∥∥4

(diT Qdi)(diT Q−1di)

)
f̄(xi)(hint: for yi = xi − x∗,

di = Qyi)

We are measuring a vector with three different norms. We would like to estimate
<di,di>
di

T Qdi
.

At this point we would like to find a formula for computing f(xi+1)− f(xi)
that holds for all the iterates. In order to achieve such result we need to discuss
a bit of linear algebra.

Fact 4.1.7. Let A ∈ M(n,R) be a positive semidefinite matrix. Given λi the
eigenvalues of A, 1

λi
are the eigenvalues of the matrix A−1.

We can say that λn‖x‖2 ≤ xTQx ≤ λ1‖x‖2, where λn is the smallest eigenvalue,
while λ1 is the largest.

We are looking for a close formula for calculating the convergence rate, since
it depends recursively by the steps done. So we want to perform a worst case
analysis in order to find a faster way to calculate the convergence rate.

We want to prove that the ratio R is smaller than 1 so we are looking for an
upper-bound.

A coarse upper-bound is (1− λn

λ1
), but we can prove more:

Fact 4.1.8. Let A ∈ M(n,R) be a positive definite matrix. Given λi the
eigenvalues of A,

∀v ∈ Rn ‖v‖4

(vTAv)(vTA−1v) ≥
4λ1λn

(λ1 + λn)2

We won’t see the proof of this fact.
R close to 0 means that the algorithm is converging fast, so when the largest

eigenvalue (λ1) and the smallest eigenvalue (λn) are very close to each-other the
algorithm is converging fast. We can say that, since the eigenvalues represent the
length of the axes of the ellipsoids (level sets), the algorithm is converging fast
when the ellipsoids have a round shape. This fact is enforced by experimental
results, shown in Figure 4.3.



4.1. GRADIENT METHOD FOR QUADRATIC FUNCTIONS 69

(a) Q =
(

1 0
0 1

)
, qT = (10, 5). The

convergence takes only one iteration

(b) Q =
(

101 −99
−99 101

)
, qT = (10, 5).

The convergence takes hundreds of iter-
ations.

Figure 4.3: Convergence rates.

Fact 4.1.9. Let us consider a minimum problem (P) where the objective function
is quadratic. In the setting of a gradient descent method the convergence estimate
is

f(xi+1)− f(x∗) ≤
(
λ1 − λn

λ1 + λn

)2

·
(
f(xi)− f(x∗)

)
At this point, provided that we can estimate the number of iterations needed
to reach convergence, how can we say that such a number is a good result?
As usual, it depends on how that number is obtained. Since it is dimensional
independent it is very good, because it scales well (when the size of the space
- number of variables - increases). It only depends on the conditioning of the
matrix Q.

Of course as n grows Q changes, so in practice it may happen that the
conditioning of the problem is worsening as n grows.

If the balls are very rounded the zig zags needed to start converging are very
few.

� Note

So far, we provided a bound for the convergence speed of the algorithm
when Q is positive definite. What can we say when Q is positive semidef-
inite? The algorithm works, but we can’t provide an upper-bound for
the convergence rate. We are even more restrictive when dealing with
machine precision, since if there is an eigenvalue which is bigger than
zero, but very close to zero, it turns out to be 0 on the machine, so we
cannot provide an upper-bound. We will see how to deal with this case.
TODO: mettere reference



70 CHAPTER 4. UNCONSTRAINED OPTIMIZATION

Some experiments on SDQ implemented in Matlab

When we are trying to move from theory to practice we need to take into account
some practical issues, such as picking a good value for ε. A good idea would
be the norm of the gradient, but in order not to end up in a loop we need to
provide also some performances bound, e.g. the maximum number of iterations
or the maximum amount of time.

Let us suppose that we implemented the quadratic gradient descent algorithm
in Matlab, with the following signature:

1 function[x, status] = SDQ(Q, q, x, fStar, eps, MaxIter)

where fStar is the optimal value, which is used to provide an estimate of
the convergence.

� Note

When implementing functions for optimization is important to:

• check the coherence of input values (namely, if the user passed
allowed parameters);

• give all possible information about your result (for example if the
algorithm stopped because the maximum number of iterations was
reached or because the epsilon value was reached);

• check at any iteration the values of variables (e.g. before dividing
by a quantity that may be smaller than the precision check it);

• design a good log, in order to understand what is going on at each
step.

Example 4.1.1. In the implementation of SDQ∗ provided by professor Frangioni,
the execution keeps track of the actual ratio between the error at one step and
the error at the next step. This information provides insights about how many
orders of magnitude the error decreases. We can find starting points where the
ratio is exactly R. We can observe that when the conditioning is quite good the
error decreases faster than the R limitation, but as soon as we change the values
for Q and q things may change completely.

If the reader wants to run some examples, he should notice that if the
conditioning grows, the number of iterations needed to find the minimum increases
as well.

Running the algorithm on some examples shows that the theoretical results
are reflected well in the practical case.

∗https://elearning.di.unipi.it/mod/resource/view.php?id=5033

http://www.latex-tutorial.com


4.1. GRADIENT METHOD FOR QUADRATIC FUNCTIONS 71

Error

As mentioned above, if we picked as starting point for the algorithm a value that
does not lead to a minimizing sequence, we need to stop iterating after a while,
possibly when we are close enough to the solution, i.e. the absolute error εA

is small enough: εA = f(xi) − f∗ ≤ ε. It is in this context that we introduce
the concept of relative error, that compares the error with the value of the
function.
Definition 4.1.1 (Relative error). Let f : Rn → R be a quadratic function
and let us consider the gradient descent algorithm for minimizing f , where at
iteration i the moving direction di ∈ Rn and the step size αi ∈ R are computed.
We term relative error at the i-th iteration with respect to the optimal value
and denote εR

εR = (f(xi)− f∗)
|f∗|

= εA

|f∗|
≤ ε

This relative error is invariant for scaling transformations. Notice that if we
assume that f∗ might be zero the formula should be changed.

In practice, computing such error is unfeasible because we do not know f∗. In
this very common case we can substitute f∗ with a good lower bound f ≤ f∗for
f∗, but in this course we will not focus on finding f , therefore we will use as
stopping conditions the bounds on the norm of the gradient:

•
∥∥∇f(xi)

∥∥ ≤ ε (“absolute version”)

•
∥∥∇f(xi)

∥∥
‖∇f(x0)‖≤ε (“relative version”)

The second stopping condition is expressed in relation to the value of the
norm of the gradient at the starting point.

We usually choose the norm of the gradient as a threshold for precision, but
we do not know how this quantity relates to εA or εR.
Example 4.1.2. Let f : R→ R a convex function and let X = B(0, r). Estimate
εA when

∥∥∇f(xi)
∥∥ ≤ ε. Provided that we are studying a convex function we can

easily find the minimum in a ball. We can then minimize the linear function in
the range of the ball and that minimum is surely a lower bound.

Let us assume that we are guaranteed that the optimum lies in the interval
[l, u]. The first order model at a generic iterate xi lies below the function.
The linear estimate is bounded below on a compact set, hence we know that
f∗ ≥ Lxi(u), as displayed in Figure 4.4.

Lxi(y) = f(xi) +∇f(xi) (y − xi)︸ ︷︷ ︸
(u−l)

hence in general the error goes like
∥∥∇f(xi)

∥∥ (u−l), therefore whenever
∥∥∇f(xi)

∥∥ ≤
ε the actual error εA is ε(u− l).

As we said so far, minimizing with quadratic functions is pretty straightfor-
ward. In this chapter and a few subsequent ones, we will explore functions that
have different shapes.



72 CHAPTER 4. UNCONSTRAINED OPTIMIZATION

Figure 4.4

4.2 Gradient Method for Non Quadratic Func-
tions

4.3 Gradient method for non quadratic functions

� Do you recall?

Let us consider that we are sitting in a point xi at the i-th iteration. In
order to compute the next step, in the case of quadratic functions, we
found a closed formula for the step size αi:

αi = arg min{f(x + αd)} =
∥∥di
∥∥2

diT
Qdi

Such formula depends on the shape of the quadratic function f , but does
not hold in general. Conversely, we may recall from last lecture that
the proof of the orthogonality of the gradient (Proposition 4.1.1) does
not depend on the quadratic nature of our functions, so it could work in
the non-quadratic case as well, therefore Proposition 4.1.2 holds for non
quadratic functions as well. Such proposition states that a sequence of
iterates {xi} converges to a value x iff x is a stationary point. Notice
that the function f must be at least C1.

The algorithm for finding local minima of non quadratic functions has the
same structure of the one used for quadratic ones, i.e. first compute the direction
of the step and then compute its size and it is formalized in Algorithm 4.3.1.



4.3. GRADIENT METHOD FOR NON QUADRATIC FUNCTIONS 73

Algorithm 4.3.1 Pseudocode for Steepest Descent method for de-
tecting the minimum of Non-Quadratic functions.

1: procedure SNDQ(f,x, ε)
2: while (‖∇f(x)‖ > ε) do
3: d← −∇f(x);
4: α← arg min f(x + αd);
5: x← x + αd;
6: end while
7: end procedure

We will see that, differently from the quadratic case (where the gradient was
∇f(x) = Qx + q) computing the gradient in this more general case is not trivial.

The stepzise αi should be computed finding the minimum of ϕ(α) = f(xi +
αdi), but in the non-quadratic case ϕ is non convex, hence finding the global
minimum is an NP-hard problem. We will see that for our purposes finding a
local minimum is enough, hence we relax the complexity constraint.
We are now interested in assessing the convergence speed of Algorithm 4.3.1; we
can prove the following theorem that states that in the tail of the convergence
process the function gets similar to a quadratic function.

Theorem 4.3.1 (Convergence speed). Let f : Rn → R be a function in C2

and let x∗ be a local minimum for f such that the Hessian of f is strictly
positive definite (∇2f(x∗) � 0). If {xi} converges it is a minimizing sequence.
Formally,

{xi } → x∗ =⇒ { f(xi) } → f(x∗)

linearly, with same R as the quadratic case, depending on λ1 and λn, respectively
the biggest and smallest eigenvalues of the Hessian (affecting how much elongated
the Hessian is).

This theorem means that if the function is differentiable and the Hessian is
strictly positive definite then when getting closer and closer to the minimum,
the function is more and more similar to a quadratic function.

This similarity is a good new, since we can use the same methods of the
quadratic case, but, as usual, we must pay attention to conditioning.

In the next section we will provide algorithms for computing the local
minimum of the univariate function ϕ(α).

4.3.1 Finding the best step size
We need to perform a one-dimensional (or line) search, i.e. finding the local
minimum of the one dimensional function ϕi, s.t.

ϕi(α) = f(xi + αdi),

where di = −∇f(xi).



74 CHAPTER 4. UNCONSTRAINED OPTIMIZATION

Let us omit the index i, since we are concentrating on a single iteration. We are
interested in finding α∗ ∈ R such that ϕ′(α∗) = 0, but finding the roots of a
function is very expensive.

Example 4.3.1. Let us take f : R2 → R s.t. f(x1, x2) = x2
1e

x2 . We can
differentiate f and obtain ∇f(x1, x2) = (2x1e

x2 , x2
1e

x2)T .
Let us suppose that at the i-th iteration x = (0, 1)T , so ∇f(1, 0) = (2, 1). Now
x(α) = x− α∇f(x) = (1, 0)T − α(2, 1)T = (1− 2α, 0− α)T .
At this point we obtain ϕ(α) = f(x(α)) = (1− 2α)2

e−α.

In general, we are not interested in finding those points where ϕ′(α) = 0,
instead we want to force the directional derivative to be small (by picking a
threshold ε′ s.t. |ϕ′(α)| ≤ ε′).

Fact 4.3.2. Let ϕ : R → R, such that ϕ(α) = f(xi + αdi). The first order
derivative of ϕ is computed as the scalar product between the gradient and the
moving direction. Formally, ϕ′(α) =< ∇f(xi + αdi),di >.

Proof.

∂f(xi + αdi)
∂α

= ∂f(xi + αdi)
∂(xi + αdi) ·

∂(xi + αdi)
∂α

= ∇f(xi + αdi) · di

When we design optimization algorithms we require as a parameter ε, but
we do not ask for ε′. We are interested in computing ε′ ourselves from ε.

Fact 4.3.3. We claim that ε′ = ε.

Proof. Let us check what happens if ε′ = ε.
Key idea: Normalization of the direction.
We may normalize the direction of movement di without perturbing the

behaviour of the algorithm: di = − ∇f(xi)
‖∇f(xi)‖ . Notice that dividing by the norm

of the gradient is safe, since if it gets 0 we have already stopped the procedure.
In this new context

∥∥di
∥∥ = 1 and

∣∣ϕ′(αi)
∣∣ Proposition 4.3.2=

∣∣< ∇f(xi + αdi),di >
∣∣

=
∣∣< ∇f(xi+1),di >

∣∣
=
∣∣∣∣< ∇f(xi+1),− ∇f(xi)

‖∇f(xi)‖ >
∣∣∣∣



4.3. GRADIENT METHOD FOR NON QUADRATIC FUNCTIONS 75

If the iterations converge to the optimum point (formally, {xi} → x)

lim
i→∞

∣∣ϕ′(αi)
∣∣ = lim

i→∞

∣∣∣∣< ∇f(xi+1), ∇f(xi)
‖∇f(xi)‖ >

∣∣∣∣
=
∣∣∣∣< ∇f(x), ∇f(x)

‖∇f(x)‖ >
∣∣∣∣

=
∣∣∣∣< ∇f(x),∇f(x) >

‖∇f(x)‖

∣∣∣∣
= ‖∇f(x)‖ ≤ ε′ = ε

An attentive reader may notice that the thesis is based on the fact that di is
normalized. If we do not normalize di, we get that ε′ = ε

∥∥∇f(xi)
∥∥.

This is not exactly good news, because ε′ becomes smaller and smaller when
we get closer to the optimum. This implies that the iterations become heavier
at each step, because α is chosen depending on the accuracy threshold ε′.

If we can prove that the algorithm is converging we know when to stop.
This convergence is not the perfect mathematical convergence, since ε 6= 0,
because the line search will never terminate.

In the rest of this subsection we will propose three different kinds of algorithms
for performing the line search on ϕ:

• First order algorithms;

• Second order algorithms;

• Zero order algorithms;

• Inexact line search;

where the first three approaches provide an exact solution, while the fourth
one is less accurate but faster.

First order algorithms

This class of algorithms makes use of the first derivative of the function ϕ for
finding the exact minimum of ϕ, namely we want to find the minimum points
of ϕ, which corresponds to points where the first order derivative is zero and it
goes from negative to positive.

We will present three different algorithms for this class, two of them are
iterative, while the last one is a direct method. For the first two methods, we
would like to reduce the range in which performing the search, at each step.

Doubling: How can we be sure that in a given range there is a point where the
derivative is 0? Rolle’s theorem, as shown in Figure 4.5.
Since the gradient is continuous the directional derivative is continue, so ϕ
is continuous (the scalar product is continuous).



76 CHAPTER 4. UNCONSTRAINED OPTIMIZATION

Figure 4.5: First, we restrict from R to [x1, x2], then double α until the derivative is
greater than 0

Actually, we only need to find where the derivative is positive, because
the 0 of the derivative is between the previous value and this point. A
formalization of the algorithm can be found in Algorithm 4.3.2.

Algorithm 4.3.2 First order method: Line Search bisection
method

1: α← x1; #or whatever value > 0
2: while (ϕ′(α) < 0) do
3: α← 2α; #or whatever factor > 1
4: end while

Since we are dealing with machine precision we stop when α < −10308,
which is the smallest value for a double.

Works if ϕ is coercive: limα→∞ ϕ(α ) =∞ (ex. f strongly convex)

Exercise 4.3.1. Build an example where ᾱ exists but it is not found by
this algorithm.

Solution: The function changes its derivative in a range between α and
2α.

Bisection: we pick the middle point of the interval [α−, α+], as shown in
Algorithm 4.3.3.



4.3. GRADIENT METHOD FOR NON QUADRATIC FUNCTIONS 77

Algorithm 4.3.3 First order method: Line Search Bisection
Method

1: procedure LSBM((ϕ′, α, ε))
2: α− ← 0;
3: α+ ← α−;
4: α← α+;
5: while (|ϕ′(α)| > ε) do
6: α← (α+ + α−)/2;
7: if (ϕ′(α) < 0) then
8: α− ← α;
9: else

10: α+ ← α;
11: end if
12: end while
13: end procedure

Quadratic approximation: we use the first order information to build a
quadratic model m that approximates ϕ in a ball centered in α, as shown
in Figure 4.6.

Figure 4.6: The information we have about function ϕ

We may use the information we have about the function, since we know
ϕ(α−), ϕ′(α−), ϕ(α+) and ϕ′(α+).
At this point we can write a model (m(α) = aα2 + bα+ c) and specialize
it with the information we have, via computing a linear system:

a(α−)2 + b(α−) + c = ϕ(α−)
a(α+)2 + b(α+) + c = ϕ(α+)
2aα− + b = ϕ′(α−)
2aα+ + b = ϕ′(α+)

that is solved by the closed formula (secant formula)

α =
α− ϕ′(α+)− α+ϕ

′(α)

ϕ′(α+)− ϕ′(α−)



78 CHAPTER 4. UNCONSTRAINED OPTIMIZATION

This formula finds the intersection point between the segment linking α−
and α+ and the horizontal axis.

Fact 4.3.4. Let ϕ : R→ R such that ϕ ∈ C3, then quadratic interpolation
has convergence of order 1 < p < 2 (superlinear).

In Figure 4.7 we can observe a situation in which the hypotheses of
Proposition 4.3.4 are not satisfied.

Figure 4.7: If the function is not C3 and one derivative is very big, then the range
does not shrink much.

We would like to modify the formula to have at least linear convergence.
We can ensure to move not too close to one of the extremes, for example
more than 10%.

It is possible to build a more complex model, i.e. using a cubic function. Although
this is pretty involved, it allows the convergence to get quadratic (p = 2), which
is better than super linear convergence of the quadratic interpolation.

� Do you recall?

During last lecture we started dealing with algorithms for performing a
line search for finding the minimum of ϕ, in particular we introduced first
order algorithms.

Second order algorithms

Theorem 4.3.5. Given f : Rn → R such that f ∈ C2 and let ϕ(α) = x + αd,
∃ϕ′′(α) = dT∇2f(x + αd)d and it is continuous.

Proof.

∂ < ∇f(x + αd),d >

∂α
= ∂ < d,∇f(x + αd) >

∂α

= ∂(dT · ∇f(x + αd))
∂α

= dT ·
(
∂∇f(x + αd)
∂x + αd · ∂(x + αd)

∂α

)
= dT∇2f(x + αd) · d



4.3. GRADIENT METHOD FOR NON QUADRATIC FUNCTIONS 79

Since we are looking for a point where the derivative ϕ′(α) = 0, we may use
the second order derivative to write a model and, assuming to trust the model,
it can be studied.

Definition 4.3.1 (Model−Newton’s tangent method). Our model, in this case
is the first order Newton’s method applied to ϕ′, given a known point αk:

ϕ′(α) ≈ ϕ′(αk) + ϕ′′(αk)(α− αk) = 0 iff α = αk − ϕ′(αk)/ϕ′′(αk)

In this context, solving ϕ′(α) = 0 implies finding those α such that α =
αk − ϕ′(αk)/ϕ′′(αk)
Spiegazione: sono nel punto αk e stimo ϕ′(α) come ϕ′(αk) +
ϕ′′(αk)[coefficiente angolare] · (α− αk)

Algorithm 4.3.4 Second order method: Line Search with Newton’s
Method.

1: procedure LSNM(ϕ′, ϕ′′, α, ε)
2: while (|ϕ′(α)|> ε) do
3: α← α− ϕ′(α)

ϕ′′(α) ;
4: end while
5: end procedure

We need to understand when and why ϕ′′(α) 6= 0 and when and why this
method converges. The following theorem formalizes the fact that if we start
from a point α0 which is close to the optimum we reach the optimum with
quadratic speed.

Theorem 4.3.6. Let ϕ : Rn → R, ϕ ∈ C3 and take α∗ ∈ R such that ϕ′(α∗) = 0
and ϕ′′(α∗) 6= 0. There is a neighborhood of the optimal solution such that the
whole sequence of iterates converges quadratically, provided that the sequence
starts in that neighborhood.

Formally, ∃ δ > 0 s.t. if α0 ∈ [α∗ − δ, α∗ + δ] then {αk} → α∗, with p = 2.

For the proof we need to reset the second form of the second order Taylor’s
model as defined in Definition 2.7.15

∀x′ ∈ B(x, δ) ∃α ∈ (0, 1) s.t. f(x′) = Lx(x′)+1
2(x′ − x)T ·∇2f(αx+(1−α)x′)(x′−x)

Equivalently,

∀x′ ∈ B(x, δ) ∃β ∈ [x,x′] s.t f(x′) = Lx(x′) + 1
2(x′ − x)T · ∇2f(β)(x′ − x)



80 CHAPTER 4. UNCONSTRAINED OPTIMIZATION

Proof. We are in the hypothesis that the function ϕ is three times differentiable
and we would like to prove that αk+1 − α∗ → 0

We want to compute how much the error is, if compared to the error at the
previous iteration. Since (1)αk+1 := αk − ϕ′(αk)

ϕ′′(ak) and (2)ϕ′(α∗) = 0, we get

αk+1 − α∗
(1)= αk − (ϕ′(αk))

ϕ′′(αk) − α∗

= αk − α∗ −
(ϕ′(αk))
ϕ′′(αk)

(2)= αk − α∗ −
(ϕ′(αk)− ϕ′(α∗))

ϕ′′(αk)

= −ϕ
′′(αk) · (α∗ − αk)− ϕ′(αk) + ϕ′(α∗)

ϕ′′(αk)

Let us write the second form of the second order Taylor’s model centered in
αk (Definition 2.7.15, Equation (2.7.3))

∃ β ∈ [αk, α∗] s.t. ϕ′(α∗) = ϕ′(αk) + ϕ′′(αk)(α∗ − αk) + ϕ′′′(β) (α∗ − αk)2

2

and plug it into the above equation:

αk+1 − α∗ = −ϕ
′′(αk) · (α∗ − αk)− ϕ′(αk) + ϕ′(α∗)

ϕ′′(αk)

= ((((((((((
−ϕ′′(αk) · (α∗ − αk)−�

���
ϕ′(αk) +�

���
ϕ′(αk) +(((((((((

ϕ′′(αk) · (α∗ − αk) + 1
2ϕ

′′′(β) · (α∗ − αk)2

ϕ′′(αk)

=
1
2ϕ

′′′(β) · (α∗ − αk)2

ϕ′′(αk)

= ϕ′′′(β) · (α∗ − αk)2

2 · ϕ′′(αk)

We can say that the quantity 2ϕ′′(αk) does not become too small and that
the numerator ϕ′′′(β) does not become too big. This is proved since ∃δ > 0 s.t.
for α, β in[α∗ − δ, α∗ + δ]:

• ϕ′′(α) ≥ k2 > 0, because ϕ′′(α∗) 6= 0 and ϕ′′ is continuous

• |ϕ′′′(β)| ≤ k1 < ∞, because it is computed in a finite interval, hence it
cannot go to ∞.

We can go on bounding the difference between αk+1 and α∗ as follows: for α,
β ∈ [α∗ − δ , α∗ + δ]



4.3. GRADIENT METHOD FOR NON QUADRATIC FUNCTIONS 81

|αk+1 − α∗|
(3)= ϕ′′′(β)

2ϕ′′(αk) · (α
k − α∗)2

≤ k1

2k2
(αk − α∗)2

(4.3.1)

In general, k1
2k2

may be very large, but it is multiplied by (αk − α∗)2, which
means that if we start close enough to α∗ the upper-bound still makes sense.

|αk+1 − α∗|≤ [ k1

2k2
](αk − α∗)︸ ︷︷ ︸

≤1

·(αk − α∗)

if k1
2k2
· (α0 − α∗) ≤ 1, it holds ∀k > 1

∣∣αk+1 − α∗
∣∣ < ∣∣αk − α∗

∣∣ and this proves
the theorem.

This approach is pretty accurate, but it is usually undesirable to devote
substantial resources to finding a value of α to precisely minimize f . This is
because the computing resources needed to find a more precise minimum along
one particular direction could instead be employed to identify a better search
direction.
The following class of algorithms circumvent the problem of the existence of
derivatives, but in general allow to find a solution without computing derivatives
at all.

J Mantra

The more derivatives we have, the smallest number of points we need
(second derivative → two points, third derivative → zero points). The
opposite holds as well.

Zero order algorithms

Definition 4.3.2 (Unimodal function). Let f : R → R. We say that f is
unimodal if for some value m ∈ R it is monotonically increasing for each
x ≤ m and monotonically decreasing for any x ≥ m or vice-versa. Notice that
any unimodal function admits only one maximum (minimum) value f(m).

Let us be given ϕ, we are looking for α∗ within an error tolerance ε. Notice
that if the function ϕ is not unimodal we have no guarantee that the interval
that we are discarding does not contain the “deepest” minimum. We know only
the function values in given points and we would like to shrink a candidate
interval in the best way possible.
We propose an elegant solution via golden ratio.



82 CHAPTER 4. UNCONSTRAINED OPTIMIZATION

Figure 4.8: The candidate interval is [x1, x2], since ϕ(x2) > ϕ(x1) and we are allowed
to exclude the interval [x3, +∞) since the value in x3 is bigger than ϕ(x2).

Definition 4.3.3. In mathematics, two quantities are in the golden ratio if
their ratio is the same as the ratio of their sum to the larger of the two quantities.
Formally, ∀a, b ∈ R such that a > b > 0,

a+ b : a = a : b

and we denote rg such ratio.

Figure 4.9: The relationship between r and 1 − r is r : 1 = (1 − r) : r.

Let us start from an interval [α−, α+] ⊆ R, and let us take r as the inverse of
the golden ratio r = 1/

√
5−1
2 ≈ 0.618.



4.3. GRADIENT METHOD FOR NON QUADRATIC FUNCTIONS 83

Algorithm 4.3.5 Zero-th order method: Line Search Golden Ration
Method.

1: procedure LSGRM(ϕ, α, ε)
2: α− ← 0;
3: α+ ← α;
4: α′

− ← (1− r)α;
5: α′

+ ← rα;
6: while (α+ − α− > ε) do . not the same ε
7: if ϕ(v′

l) > ϕ(v′
r) then

8: α− ← α′
−;

9: α′
− ← α← α′

+;
10: α′

+ ← α+(1− r)(α+ − α−);
11: else
12: α+ ← α′

+;
13: α′

+ ← α← α′
−;

14: α′
− ← α− + r(α+ − α−);

15: end if
16: end while
17: end procedure

0 0.191 0.250 0.309 0.332
0.382

0.5

α+α′
+

α′−
α−

α+α′−
α− α′

+

α′− α′
+

α− α+

α− α′−α
′
+

α+

Figure 4.10: Plot of iterates of zero order algorithm for line search. The lines below
the x axis represent the different values of α−, α+, α′

−, α′
+ across different iterations,

while the greed dot marks how the value α changes.

Example 4.3.2. Let us try Algorithm 4.3.5 on a toy example, displayed in
Figure 4.10. Let α = 0 and let ε = 0.1.



84 CHAPTER 4. UNCONSTRAINED OPTIMIZATION

α− = 0
α+ = 0.5
α′

− = rα = (1− 0.618) · 0.5 = 0.191
α′

+ = r · α = 0.618 · 0.5 = 0.309

Since 0.5− 0 < 0.1 we enter the loop. According to the values of function ϕ in
α− and α+ we enter the if branch:

α− = α′
− = 0.191

α′
− = α′

+ = 0.309
α = α′

+ = 0.309
α′

+ = α− + r · (α+ − α−) = 0.191 + 0.618 · (0.5− 0.191) = 0.382

Provided that 0.5 − 0.191 < 0.1 we enter the loop. According to the values of
function ϕ in α− and α+ we enter the else branch:

α+ = α′
+ = 0.382

α′
+ = α′

− = 0.309
α = α′

− = 0.309
α′

− = α− + (1− r) · (α+ − α−) = 0.191 + 0.309 · (0.382− 0.191) = 0.25

Provided that 0.382− 0.191 < 0.1 we enter the loop. According to the values of
function ϕ in α− and α+ we enter the if branch:

α− = α′
− = 0.25

α′
− = α′

+ = 0.309
α = α′

+ = 0.309
α′

+ = α− + r · (α+ − α−) = 0.25 + 0.618 · (0.382− 0.25) = 0.332

Inexact line search

In the rest of this lecture we will present a line search method to determine
the maximum amount of movement to perform along a given search direction,
starting with a relatively large estimate of the step size for movement along the
search direction, and iteratively shrinking the step size (“backtracking”) until a
decrease of the objective function is observed that adequately corresponds to the
decrease that is expected, based on the local gradient of the objective function.

Definition 4.3.4 (Armijo’s condition). Let ϕ : R+ ∪ {0} → R such that
ϕ(α) = f(x + αd). The Armijo’s condition selects those real values α such
that the function value in those points (ϕ(α)) is smaller than the value of a line
which passes through ϕ(0) and is less steep than the tangent to the curve in such
point.



4.3. GRADIENT METHOD FOR NON QUADRATIC FUNCTIONS 85

Formally, α ∈ R satisfies Armijo’s condition if for some control parameter
0 < m1 < (�)1 the following holds

ϕ(α) ≤ ya(α) = ϕ(0) +m1αϕ
′(0) (A)

where we call ya(α) the Armijo’s line.

y(α) = ϕ′(0)α + ϕ(0)

ya(α) = ϕ′(0)m1α + ϕ(0)

α

ϕ(α)

(a) Armijo’s condition leads to a line which
is less steep than the tangent in α = 0.

y(α) = ϕ′(0)α + ϕ(0)

ya(α) = ϕ′(0)m1α + ϕ(0)

α

ϕ(α)

(b) Armijo’s condition selects those α ∈ R

such that ϕ(α) < ya(α).

Figure 4.11: Graphical hint of the functioning of Armijo’s condition.

Intuitively, provided that we are minimizing ϕ, ϕ′(0) < 0. This means that
the slope of the line ya (m1ϕ

′(0)) is smaller in absolute value (hence bigger)
than the slope of the tangent to the curve ϕ in 0, therefore the line ya is less
steep then y.

An attentive reader may notice that α ≈ 0 lead to values of ϕ(α) < y(α),
hence smaller than ya(α), but this would lead to a very slow convergence.
In order to overcome this issue one can decide to start from a large α and reduce
it until it satisfies Armijo’s condition (as shown in Algorithm 4.3.6) or introduce
another algebraic constraint:

Algorithm 4.3.6 Inexact method: Backtracking Line Search.
1: procedure BLS(ϕ,ϕ′, α,m1, τ)
2: while (ϕ(α) > ϕ(0) +m1αϕ

′(0)) do
3: α← τα; . With τ < 1
4: end while
5: end procedure

Definition 4.3.5 (Goldstein’s condition). Let ϕ : R+ ∪ {0} → R such that
ϕ(α) = f(x + αd) and let m1 ∈ R be the Armijo’s constant. The Goldstein’s
condition selects those real values α that satisfy Armijo’s condition but also
such that the function value in those points (ϕ(α)) is larger than the value of a



86 CHAPTER 4. UNCONSTRAINED OPTIMIZATION

line which passes through 0 and is less steep than the tangent to the curve in
such point.

Formally, α ∈ R satisfies the Goldstein’s condition if for come control
parameter m1 < m2 < 1 the following holds

ϕ(α) ≥ yg(α) = ϕ(0) +m2αϕ
′(0) (G)

y(α) = ϕ′(0)α + ϕ(0)

ya(α) = ϕ′(0)m1α + ϕ(0)

yg(α) = ϕ′(0)m2α + ϕ(0)

α

ϕ(α)

(a) Goldstein’s condition leads to a line
which is less steep than the tangent in α =
0 but steeper than Armijo’s line.

y(α) = ϕ′(0)α + ϕ(0)

ya(α) = ϕ′(0)m1α + ϕ(0)

yg(α) = ϕ′(0)m2α + ϕ(0)

α

ϕ(α)

(b) Armijo’s and Goldstein’s conditions se-
lect those α ∈ R such that ϕ(α) < ya(α)
and ϕ(α) > yg(α).

Figure 4.12: Conjunction of Armijo’s and Goldstein’s conditions.

It may happen that the points that satisfy both Goldstein’s and Armijo’s
conditions do not contain a local minimum.
To circumvent this problem another condition comes to help us.

Definition 4.3.6 (Wolfe’s condition). Let ϕ : R+ ∪ {0} → R such that ϕ(α) =
f(x + αd) and let m1 ∈ R be the Armijo’s constant. The Wolfe’s condition
selects those real values α that allow for a decrease in the slope (curvature
condition), following the reasoning that close to the optimum the tangent line is
almost horizontal.

Formally, let m1 < m3 < 1

ϕ′(α) ≥ m3ϕ
′(0) (W )

Figure 4.13(b) shows the intervals selected by Wolfe’s rule. Provided that we are
moving along a direction of negative curvature for f , we have that ϕ′(α) < 0,
therefore Wolfe’s condition is satisfied also by those points α where the derivative
is positive.

Sometimes, the curvature condition is modified to force the step length to
stay in at least a broad neighborhood of a local minimizer or stationary point of
the univariate function ϕ.

Provided that ϕ′(0) < 0, |ϕ′(0)| = −ϕ′(0); follows a stronger variant of
Wolfe’s condition.



4.3. GRADIENT METHOD FOR NON QUADRATIC FUNCTIONS 87

y(α) = ϕ′(0)α + ϕ(0)

α

ϕ(α)

(a) Wolfe’s condition fixes a threshold for
the slope of the line tangent to the curve
ϕ.

y(α) = ϕ′(0)α + ϕ(0)

α

ϕ(α)

(b) Wolfe’s rule selects those points where
ϕ′(α) > 0−.

Figure 4.13: Wolfe’s condition.

Definition 4.3.7 (Strong Wolfe’s condition). Let ϕ : R+ ∪ {0} → R such
that ϕ(α) = f(x + αd) and let m1 ∈ R be the Armijo’s constant. The strong
Wolfe’s condition selects those real values α that allow for a decrease in the
slope but prevent it to become big in absolute value. Formally, let m1 < m3 < 1

|ϕ′(α)| ≤ m3|ϕ′(0)| = −m3ϕ
′(0) (W ′)

y(α) = ϕ′(0)α + ϕ(0)

α

ϕ(α)

Figure 4.14: Strong Wolfe’s condition.

Fact 4.3.7. Let ϕ : R+ ∪ {0} → R such that ϕ(α) = f(x + αd). If ϕ′(α) 6� 0
and both Armijo’s and Wolfe’s (or Armijo’s and strong Wolfe’s) conditions hold
then all local minima (maxima) are captured unless m1 is too close to 1.



88 CHAPTER 4. UNCONSTRAINED OPTIMIZATION

For a graphical hint of Proposition 4.3.7, see Figure 4.15, where we can
observe that if m1 ≈ 1, the line is pretty steep, therefore the intersection between
Armijo’s and Wolfe’s regions is very small. In practice it is common to choose
m1 ≈ 0.0001.

y(α) = ϕ′(0)α + ϕ(0)

ya(α) = ϕ′(0)m1α + ϕ(0)

α

ϕ(α)

Figure 4.15: m1 ≈ 1 and the intersection between Armijo’s and Wolfe’s ranges.

The mi are like the hyperparameters of machine learning. Less formally, if
we choose an m1 far enough from 1 everything works fine.

Theorem 4.3.8. Let ϕ ∈ C1 and ϕ(α) bounded below for α ≥ 0 then ∃ α s.t. (A)
∩ (W’) holds.

Proof. Let us write Armijo’s line: ya(α) = ϕ(0) + m1ϕ
′(0)α. Let us define

d(α) = ya(α) − ϕ(α) = ϕ(0) + m1ϕ
′(0)α − ϕ(α), such that d′(α) = y′

a(α) −
ϕ′(α) = m1ϕ

′(0) − ϕ′(α). It goes without saying that d(0) = 0 and d′(0) =
m1ϕ

′(0)− ϕ′(0) = (m1 − 1)︸ ︷︷ ︸
<1

ϕ′(0)︸ ︷︷ ︸
<1

> 0.

In α = 0 the derivative of ϕ is negative, hence the function ϕ is decreasing.
From the hypothesis we know that ϕ is bounded below, hence at a certain point
it will start increasing its value until it will intersect with Armijo’s line eventually.
Let us call ᾱ > 0 the smallest value such that d(ᾱ) = 0. All the points α ∈]0, ᾱ[
satisfy Armijo’s condition.
We are left with the task of proving that also strong Wolfe’s condition holds
for those α ∈]0, ᾱ[. 0 and ᾱ are the two roots of the function d, so we can use
Rolle’s theorem, in order to prove that the function d has a stationary point
in the interval ]0, ᾱ[. Let us call the stationary point α∗ ∈]0, ᾱ[, d′(α∗) = 0 iif
ϕ′(α∗) = −m1ϕ

′(0), therefore |ϕ′(α∗)| = m1 · |ϕ′(0)| and this proves Wolfe’s
rule, because m1 < m3 < 1, hence |ϕ′(α∗)| ≤ m3|ϕ′(0)|.

How can we find such a point?

Fact 4.3.9. Let ϕ : R+ ∪ {0} → R such that ϕ(α) = f(x + αd) and let ∇f be
L-Lipschitz. Then ϕ′ is L-Lipschitz as well and L does not depend on the iterate
point x.



4.3. GRADIENT METHOD FOR NON QUADRATIC FUNCTIONS 89

Figure 4.16: If ϕ is not going to −∞ the Armijo’s line (blue) and the function will
meet in ᾱ > 0.

Proof.

|ϕ′(α1)− ϕ′(α2)| =
∣∣dT∇f(x + α1d)− dT∇f(x + α2d)

∣∣
= dT |∇f(x + α1d)−∇f(x + α2d)|︸ ︷︷ ︸

≤L·|x+α1d−(x+α2d)|

≤ dTL · |�x + α1d− (�x + α2d)|
= dTL|α1 − α2|d
*= L · |α1 − α2|

where *= follows from the fact that d has norm 1.

Fact 4.3.10. Let ϕ : R+ ∪ {0} → R such that ϕ(α) = f(x + αd), ϕ bounded
below and ∇f L-Lipschitz. Let ᾱ ∈ R s.t. ϕ(α) = ϕ(0) +m1ϕ

′(0)ᾱ, then ᾱ has
the same behaviour of

∥∥∇f(xi)
∥∥. Formally,

ᾱ > (1−m1)
∥∥∇f(xi)

∥∥
L

Proof. According to Proposition 4.3.9, ϕ′ is L-Lipschitz hence

L(ᾱ− 0) ≥ ϕ′(ᾱ)− ϕ′(0)

Thanks to the choice of ᾱ we have that ϕ′(ᾱ), therefore

ϕ′(ᾱ)− ϕ′(0) > (1−m1)(−ϕ′(0)) *= (1−m1)(
∥∥∇f(xi)

∥∥)

where *= follows from

ϕ′(α) =< ∇f(x + αd),
−∇f(x + αd)/‖∇f(x + αd)‖

d >= ‖∇f(x + αd)‖2

‖∇f(x + αd)‖

therefore we have the thesis ᾱ > (1−m1)
∥∥∇f(xi)

∥∥
L .



90 CHAPTER 4. UNCONSTRAINED OPTIMIZATION

Now we can prove the following

Theorem 4.3.11. If (A) ∩ (W) holds ∀i then either {f(xi)} → −∞ or
{
∥∥∇f(xi)

∥∥} → 0.

Proof. By contradiction. Let us assume that
∥∥∇f(xi)

∥∥ diverges. Formally,
−ϕ′(0) =

∥∥∇f(xi)
∥∥ ≥ ε > 0 ∀i. Then

Wolfe. Wolfe’s condition ensures that the step ᾱ does not go to 0. Formally,

αi ≥ ᾱ > (1−m1)
∥∥∇f(xi)

∥∥
L ≥ (1−m1) ε

L .

Let δ := (1−m1)·ε
L , then αi ≥ δ > 0;

Armijo. Armijo’s condition ensures that the function value decreases at each
iteration. Formally, f(xi+1) ≤ f(xi) −m1α

i
∥∥∇f(xi)

∥∥ ≤ f(xi) −m1δε︸ ︷︷ ︸
6=0

,

because both δ, ε > 0;

Therefore, if the norm of the gradient is not 0, f decreases at each iteration, it
will eventually go to −∞.

Fact 4.3.12. If (A) ∩ (W) holds ∀i then Backtracking Line Search algorithm
converges.

Proof. By contradiction. Let us assume that
∥∥∇f(xi)

∥∥ diverges. Formally,∥∥∇f(xi)
∥∥ ≥ ε > 0 ∀i. Thanks to Theorem 4.3.11, we have ᾱ > δ > 0∀i.

Let us suppose to start the BLS procedure with a stepsize α0 = 1, the
generic step of BLS algorithm is α← τα. We denote with h ∈ N the smallest
integer such that αh = τh ≤ δ. Formally, h = min{k : τk ≤ δ}. It holds that
∀i αi ≥ τ−h > 0 As proved by Theorem 4.3.11 f(xi+1) ≤ f(xi)−m1τ

−hε then
the function f eventually goes to −∞.

4.4 Good Practices for the Design of the Project
Follow some good suggestions for implementing the gradient method in Matlab:

• When we have to implement a function the first question we need to ask
ourselves is: “how many parameters should the function take?”;

• The interface needs to be designed, i.e. in the case of the gradient method
we would like the user to be able to run it although he might not know
what a good starting point could be;

• There might be some parameters with the same semantic of hyper-parameters,
so they need to be adjusted in order to specify the algorithm;

• Another thing that should be taken into consideration is that sometimes,
when measuring the number of times the code of the function has been
executed we need to count also the calls to functions inside a single step;



4.5. GENERAL DESCENT METHODS 91

• It is important to check the conditions that should be satisfied by the
input data for the theoretical coherence. In case of not valid input an error
message should be returned;

• Another important thing to be done is building a set of test functions,
possibly edge cases for the problem, to see how the algorithm works;

• diff(f, x) calculates the gradient of the function f in the variable x. If
we want to get a simplified version, we may run simplify(diff(f,x));

• A very nice tool to compute derivatives for arbitrary functions is Adiga-
tor†.

4.5 General Descent Methods

� Do you recall?

So far, we chose as direction for the step the direction where the decrease of
the function is maximum (di = −∇f(xi)) and for that descent direction we
applied a line search for finding the optimal step size α. This was possible
thanks to the convergence argument which says that in proximity
of the stationary point of the linear model the norm of the gradient
goes to 0. Formally, ‖∇f(x)‖ → 0 when ϕ′(0) → 0, where ϕ′(α) =<
∇f(xi + αidi),di >.

In this lecture we will propose a different choice for the moving direction di,
that keeps satisfying the convergence argument.

For example, let us take as direction a rotation of the opposite of the gradient,
the value of ϕ′ is then the cosine of the angle of the rotation times the opposite
of the norm of the gradient. We have an infinite number of angles that we can
choose, so we have a lot of flexibility.

Let us define the angle θi between the search direction di and the steepest
descent direction −∇f(xi) as

cos θi = < ∇f(x),di >

‖∇f(xi)‖ · ‖di‖

Note that the angle between di and the gradient should not be too close to
90°, otherwise the cosine would get approximately 0..

Theorem 4.5.1 (Zoutendijk’s theorem). Let us consider minimum problem (P)
where the objective function f ∈ C1, ∇f is L-Lipschitz and f bounded below. Let

†https://sourceforge.net/projects/adigator

https://sourceforge.net/projects/adigator
https://sourceforge.net/projects/adigator


92 CHAPTER 4. UNCONSTRAINED OPTIMIZATION

us consider an iteration xi+1 = xi + αidi, where di is a descent direction and
αi ∈ R satisfies both Armijo’s and Wolfe’s conditions. Then

∞∑
i=1

cos2(θi)
∥∥∇f(xi)

∥∥2
<∞

� Do you recall?

A positive infinite sequence, whose corresponding series converges to a
number, converges to 0 reasonably fast.

Therefore, if we choose an angle θi which cosine is bounded below then the
norm of the gradient goes to 0 quickly. More formally,

Fact 4.5.2. Under the same hypotheses of Theorem 4.5.1, given θi angle between
di and the gradient such that cos(θi) ≥ ε > 0 then

∥∥∇f(xi)
∥∥→ 0.

Proof. As stated in the recap, the following holds:

cos2(θi)
∥∥∇f(xi)

∥∥2 → 0

therefore, one between cos(θi) and
∥∥∇f(xi)

∥∥2 should converge to zero, but it is
no the cosine, because it is bounded below by ε > 0.

We found a converging algorithm that allows much more freedom by allowing
infinite choices for the descent direction.

4.6 Newton’s Method

J Mantra

If you want better direction, use a better model.

Newton’s method attempts to solve the minimum problem (P) by construct-
ing a sequence {xi} from an initial guess (starting point) x0 ∈ Rn that converges
towards a minimizer x∗ of f by using a sequence of second-order Taylor approxi-
mations of f around the iterates.

Newton’s method is the father of all algorithms that pick a direction which
is different from the opposite of the gradient. So far, we used a linear model to
approximate the objective function in a ball around the current point. Using a
linear model we did not have any information on the curvature.



4.6. NEWTON’S METHOD 93

4.6.1 Convex case
In the next line we will explore Newton’s method in the simplest case, when the
function is perfectly convex (i.e. the Hessian is strictly positive definite).

Theorem 4.6.1. Let f : Rn → R be a function such that ∇2f(xi)�0. Then the
second order model in proximity of point x (Qxi(y) for y ∈ B(x, δ)) admits a
minimum.

Proof. Let us write x instead of xi to ease notation. The second order Taylor’s
expansion of f around the point x (recall Definition 2.7.15) is:

Qx(y) = f(x)+ < ∇f(x),y− x > +1
2(y− x)T∇2f(x)(y− x)

= f(x)+ < ∇f(x),y > − < ∇f(x),x > +

+ 1
2

(
yT∇2f(x)y− 2xT∇2f(x)y + xT∇2f(x)x

)
= f(x)+ < ∇f(x),y > − < ∇f(x),x > +

+ 1
2yT∇2f(x)y− xT∇2f(x)y + 1

2xT∇2f(x)x

We are looking for the minimum of Qx, that it is equivalent to searching for
a stationary point. Let us differentiate Qx:

∂Qx(y)
∂y

*=
∂(< ∇f(x),y > + 1

2 yT∇2f(x)y− xT∇2f(x)y
∂y

=
∂(< ∇f(x) + 1

2 yT∇2f(x)− xT∇2f(x),y >

∂y

= ∇f(x) + 1
2∇

2f(x)y− xT∇2f(x)

where *= is given by the fact that f(x), − < ∇f(x),x > and 1
2 xT∇2f(x)x are

constant terms with respect to y. The equality obtained above allows to say
that y is a stationary point iff

1
2∇

2f(x)y = xT∇2f(x)−∇f(x)
(1)= ∇2f(x)x−∇f(x)

y = 2 ·
(

x− [∇2f(x)]−1∇f(x)
)

Where (1)= follows from Corollary 2.7.13 (f ∈ C2 ⇒ ∇2f ∈ S(n,R)).

The moving direction of the gradient descent algorithm using Newton’s
method is obtained taking the opposite of the inverse of the Hessian times the
gradient of the function. Formally, di = −[∇2f(xi)]−1∇f(xi).



94 CHAPTER 4. UNCONSTRAINED OPTIMIZATION

In Newton’s method αi = 1 will always work.
An attentive reader may notice that Theorem 4.6.1 holds only if the Hessian

is invertible.
Moreover, even if the Hessian is invertible, the computation of the descent

direction requires to solve a linear system. A way to circumvent this problem is
putting the gradient to 0, so we can write the Taylor form of the gradient and
solve a linear equation which is ∇f(x) ≈ ∇f(xi) +∇2f(xi)(x− xi).

Theorem 4.6.2. Let f : Rn → R s.t. f ∈ C3 and let x∗ be a saddle point such
that ∇f(x∗) = 0 and ∇2f(x∗) � 0. Then ∃B(x∗, r) s.t. x1 ∈ B and {xi} → x∗
quadratically.

Notice that Theorem 4.6.2 states that the descent direction computed through
Newton’s method is correct both close and far from the minimum point.

An attentive reader may notice that the scalar product between the function
value at the i-th iterate f(xi) and the descent direction di should be negative
but also not too close to 0. Such condition is ensured when the function f is
such that uI � ∇2f � LI, which implies that the function is strongly convex, in
other words that the eigenvalues of the Hessian do not get too close to zero (in
terms of machine precision).

Theorem 4.6.3 (Global convergence of Newton’s method). Let f : Rn → R

s.t. f ∈ C3 and such that satisfies uI � ∇2f � LI and cos θi = <∇f(x),di>
‖∇f(xi)‖·‖di‖ .

Then Newton’s method converges globally.

� Do you recall?

In the notes on Numerical Methods we stated the Variational charac-
terization:
Let Q ∈ S(n,R) and let x ∈ Rn. Then

λmin‖x‖2 ≤ xTQx ≤ λmax‖x‖2

where λmax and λmin are respectively the eigenvalue of maximum value
and the eigenvalue of minimum value.

Proof. The variational characterization of the eigenvalues and the definition
of di (di := −[∇2f(xi)]−1∇f(xi) ⇐⇒ ∇2f(xi)di = −∇f(xi)) leads to the
following upper-bounds:

1.
diT∇f(xi) = −(di)T∇2f(xi)di ≤ −λmin

∥∥di∥∥2

2. ∥∥∇f(xi)
∥∥ =

∥∥∇2f(xi)di∥∥ ≤ ∥∥∇2f(xi)
∥∥ · ∥∥di∥∥ = λmax

∥∥di∥∥



4.6. NEWTON’S METHOD 95

From the definition of cos θi = <∇f(x),di>
‖∇f(xi)‖·‖di‖ we get

cos(θi) ≤ −λmin/λmax ≤ −u/L

Theorem 4.6.4. Let f : Rn → R s.t. f ∈ C3 and such that satisfies uI �
∇2f � LI and cos(θi) ≤ −λmin/λmax ≤ −u/L. Then the method not only
converges, but we also have that from some iteration onward, αi = 1 always
satisfies Armijo’s condition.

Proof.

ϕ(α = 1) = f(xi + di) = f(xi)+ < ∇f(xi),di > +1
2 · (d

i)T [∇2f(xi)]di +R3(
∥∥di∥∥)

= f(xi) + (di)T∇f(xi) + 1
2 · (d

i)T [∇2f(xi)]di +R3(
∥∥di∥∥)

= f(xi)−∇f(xi)T
(

[∇2f(xi)]−1
)T

∇f(xi)+

+ 1
2∇f(xi)T

(
[∇2f(xi)]−1

)T

����∇2f(xi)������
[∇2f(xi)]−1∇f(xi) +R3(

∥∥di∥∥)

*= f(xi)−∇f(xi)T [∇2f(xi)]−1∇f(xi)+

+ 1
2∇f(xi)T [∇2f(xi)]−1∇f(xi) +R3(

∥∥di∥∥)

= f(xi)− 1
2 · ∇f(xi)T · [∇2f(xi)]−1∇f(xi)︸ ︷︷ ︸

di

+R3(
∥∥di∥∥)

= f(xi)︸ ︷︷ ︸
ϕ(0)

−1
2︸︷︷︸

m1

< ∇f(xi),di >︸ ︷︷ ︸
ϕ′(0)

+R3(
∥∥di∥∥)

(4.6.1)

where *= follows from Corollary 2.7.13 (f ∈ C2 ⇒ ∇2f ∈ S(n,R)) and the fact
that the inverse of a symmetric matrix (if it exists) is a symmetric matrix as
well.

It can be proved that the convergence is superlinear.
If we start with a step size of 1, we end up in a situation in which the line search
is not computed when we are close to the minimum.
This works under the assumption that the eigenvalues are bounded both above
and below (deriving from the bounds on the Hessian).



96 CHAPTER 4. UNCONSTRAINED OPTIMIZATION

4.6.2 Interpretation of Newton’s method

J Mantra

Newton’s method is exactly gradient method on a dilated space. Or
equivalently, Newton’s method is the gradient method with some precon-
ditioning.

Let us take Q ∈ M(n,R) such that Q � 0, then Q = R · R for some
R ∈M(n,R). Let us perform a variable change (y = Rx) — which is possible
given that R is non singular — and we get fy(y) = 1

2 yT Iy + qR−1y, which has
as an Hessian the identity matrix, which is the optimal matrix for convergence
in Newton’s method.

Formally, the descending direction dy is computed as follows: dy = −∇fy(y) =
−y − R−1q. Since we chose 1 as step size we obtain that ∇fy(y + dy) =
∇fy(�y−�y−R

−1q) = ∇fy(−R−1q) = 0.
It takes only one iteration, because all the eigenvalues are 1 so the the ratio

between the greatest and the smallest is 1 and the subtraction is 0.
If we do the inverse operation (x = R−1y) to the direction we get dx, the

direction in x variable.
Problem:

We made a lot of assumptions on the Hessian, without the ones there’s
no guarantee that we are moving on a descending direction. How can we
relax these constraints?

4.6.3 Non convex case
Saying that the function f is not convex is equivalent to saying that the Hessian
is indefinite, therefore not invertible. In such case we propose to compute the
descent direction (previously defined as di = −[∇2f(xi)]−1∇f(xi)) substituting
the inverse of the Hessian with a matrix H ′ which is strictly positive definite ad
has more or less the same properties of the Hessian.

For example, we can build Hi summing to the Hessian a multiple of the
identity matrix: Hi = ∇2f(xi) + εiI � 0. The sequence {Hi} is supposed to
converge to a matrix H ′ that is strictly positive definite.
A proper choice for ε should ensure that all the eigenvalues are at least δ > 0,
for an “appropriately chosen smallish δ” such that uI � H ′ � LI. Formally,

ε = max{0, δ − λmin}

The real value δ should not be too small for both numerical (any double ≤ 1e-
16 is treated as 0 by computers) and algorithmic (the smaller λmin(∇2f(xi)+εI)
the more elongated the axes of S(Qxi , ·)) reasons.



4.6. NEWTON’S METHOD 97

It can be proved that the ε we chose is the solution to an optimization
problem: min{

∥∥H −∇2f(xi)
∥∥ H � δI}. The choice for δ in the Matlab code is

10−6.

Observation 4.6.1. Note that these constraints are important and we will get
back to them later on in the course.

� Do you recall?

Let us rewrite here matrix norm from Definition 2.4.9: Let A ∈M(n,R),
we define Frobenius’ norm of A the square root of the squared sum of
all its entries. Formally,

‖A‖F :=

√√√√ m∑
i=1

n∑
j=1

aij
2

Could we use a different norm instead of the 2-norm? Yes, for example we can
use Frobenius’s norm, changing a bit the algorithm, but we still get convergence.
We would need to solve min{

∥∥H −∇2f(xi)
∥∥

F
H � δI}, which is performed in

two steps:

1. compute spectral decomposition ∇2f(xi) = HΛHT

2. Hi = HΛ̄HT with γ̄i = max{λi, δ}

In both cases, {xi} → x∗ with ∇2f(x∗) � δI, which implies εi = 0 and
Hi = ∇2f(xi) eventually.

Fact 4.6.5. If “Hi looks like ∇2f(xi) along di”, formally limi→∞
∥∥(Hi −∇2f(xi))di

∥∥ ∥∥di
∥∥ =

0, the convergence is superlinear.

This proposition is important because it stresses that matrix H does not
have to be close to the Hessian except for a particular direction.

Computational complexity

We still need to compute eigenvalues, which takes O(n3), which is too
much if we are in multidimensional spaces.

As a closing observation we want to stress that Newton’s method is very fast
to converge to a local minimum, but this behaviour may represent a problem,
because the algorithm may miss global minima.



98 CHAPTER 4. UNCONSTRAINED OPTIMIZATION

Key observation

When we look at a quadratic model approximating f around a certain
point x we could not take negative curvature directions, although those are
the most promising directions because there the function value decreases.
In quasi-Newton methods we will try to look at those directions, removing
the constraint of second order differentiability and then we will try to
avoid inverting matrices.

When the Hessian is not strictly positive definite, it is not invertible, hence
Newton’s direction di = −∇2f(xi)−1∇f(xi) is not well defined.
Moreover, when the Hessian is not even positive semidefinite it means that there
are some directions of negative curvature, hence the function is unbounded below
along some directions.
The approach we presented in last lecture (Hi = ∇2f(xi) + εI or Hi = λmin ·
(∇2f(xi) + εI)) consists in modifying the Hessian in a way in which we do not
consider such direction.

In general, we know that a model is reliable only around a certain point xi,
so we can find the minimum of a model in a ball around xi (trust region).
Formally, we aim to solve xi+1 ∈ arg min{Qxi(y) : y ∈ T i}, where T i ⊆ Rn

and T i is a compact set where the quadratic model around xi (Qxi) can be
trusted.
In our case, the Hessian is not positive semidefinite, hence the model has no
minimum, unless we restrict to a compact set, in which we can trust our model
(trust region).

Observation 4.6.2. Finding the minimum of f in such a region is a NP-hard
problem, if we do not restrict to a rounded ball.

Let us consider to pick r as the radius of the ball defining the trust region,
then the scalar λ ∈ R that satisfies the Karush-Khun-Tucker conditions is fully
determined.

Definition 4.6.1 (Karush-Khun-Tucker conditions). Any optimal solution of
the problem xi+1 must satisfy that ≡ ∃λ ≥ 0 s.t.

Karush: [Hi + λI]xi+1 = −∇f(xi) [linear];

Kuhn: Hi + λI � 0 [semidefinite];

Tucker: λ(r −
∥∥xi+1

∥∥) = 0 [nonlinear].

Where the last condition means that either λ = 0 or the solution lies on the
border of the ball.

As an example, let us take a big ball (large r) and let xi+1 not on the border,
the complementary slackness is satisfied iff λ = 0.

What’s the difference between this approach and what we used to do before?
We have two different cases:



4.7. QUASI-NEWTON’S METHODS 99

• If
∥∥xi+1

∥∥ < r the the Complementary slackness condition is satisfied only
if λ = 0. In this scenario, the Hessian is not amended, which implies that
we perform exaclty the Newton’s method, without taking into account T ;

• Conversely, we need to find λ > 0 and we need to solve a linear system
(Karush condition) and this means solving a linear system (complexity
O(n3)). Notice that this is the same of performing a line search using
εi = λ.

Notice that the trust region method works selecting first the step size (the
radius of the ball) and then the direction.

Key idea

We don’t need to compute the Hessian, we can use the first order infor-
mation to infer things on the second order matrix.

4.7 Quasi-Newton’s Methods
Quasi Newton methods exploit first order information (computing gradients) to
approximate Hi, using an iterative process.

From the i-th iteration to the (i+ 1)-th we compute two different Hessians
(Hi and Hi+1) that can be chosen custom(ish).

At the i-th step we have the i-th model defined as

mi(x) = ∇f(xi)(x− xi) + 1
2(x− xi)T

Hi(x− xi)

The next step xi+1 is computed as xi+1 = xi + αidi.
At the next step we need to recompute the gradient in xi+1 and the matrix

Hi+1 and then build the model as

mi+1(x) = ∇f(xi+1)(x− xi+1) + 1
2(x− xi+1)T

Hi+1(x− xi+1)

Property 4.7.1. Hi should:

1. positive definite (Hi+1 � 0);

2. allow the following equality: ∇mi+1(xi) = ∇f(xi), where we know the
gradient in the previous point and the gradient in the current point. Equiv-
alently, Hi+1( xi+1 − xi ) = ∇f(xi+1) − ∇f(xi), which we call secant
equation and we denote (S).

Come mai sono equivalenti? Non manca un (x− xi+1)?

3. be such that
∥∥Hi+1 −Hi

∥∥ is “small”.



100 CHAPTER 4. UNCONSTRAINED OPTIMIZATION

Let us define si such that: si = xi+1−xi = αidi and yi = ∇f(xi+1)−∇f(xi).
Using this new notation, we can rewrite the second condition that should be
satisfied by Hi as Hi+1si = yi ⇒ siT yi = siT

Hi+1si. Provided that Hi+1 � 0
we have that siT yi > 0. Moreover, si depends the stepsize that should be
properly chosen in order to satisfy the curvature condition of the subsequent
step.

si is chosen, while yi is decided by the function.
In order to have a matrix Hi that satisfies the first two conditions we could

check that Hi+1si = yi, because this implies siyi = (si)T
Hi+1si and this implies

1. and 2., hence we obtain the curvature condition (C) siT yi > 0. This also
implies that if a couple yi, si does not have positive scalar product then the
corresponding Hi does not respect all the three conditions stated above.

In we choose a step that satisfies the Wolfe’s condition, automatically the
curvature condition is satisfied.

Theorem 4.7.2. Wolf condition implies siT yi > 0, using the notation we
introduced: (W) =⇒ (C).

Proof.
ϕ′(αi) = ∇f(xi+1)di ≥ m3ϕ

′(0) = m3∇f(xi)di

⇓

(∇f(xi+1)−∇f(xi))di ≥ (m3 − 1)ϕ′(0) > 0

Observation 4.7.1. We may observe that this theorem implies that if we perform
Armijo Wolf exact line search condition (C) can always be satisfied.

4.7.1 Davidson-Fletcher-Powell
Let us rewrite the three conditions above as Hi+1 = arg min{

∥∥H −Hi
∥∥ : (S)

holds and H � 0}.
This minimum problem can be solved using a closed formula when the norm

has certain characteristics.

Theorem 4.7.3 (Davidson-Fletcher-Powell). The new matrix is obtained at each
step constructing a rank two matrix, obtained from Hi as a rank two correction,
as follows: Hi+1 = (I − ρiyi(si)T )︸ ︷︷ ︸

rank1

Hi (I − ρisi(yi)T )︸ ︷︷ ︸
rank2

+ ρiyi(yi)T︸ ︷︷ ︸
rank2

where ρi = 1/(yiT · si)

Let us denote Bi = Hi−1. At any step we need to compute Bi+1 = (Hi+1)−1,
because we need to solve the system. We have some formulas that give us a way
to compute (Hi+1)−1 from Hi−1.



4.7. QUASI-NEWTON’S METHODS 101

Theorem 4.7.4 (Sherman-Morrison-Woodbury). Let A ∈ GL(n,R). The in-
verse of a rank-one correction of A (which has the form A+abT , where a,b ∈ Rn)
is also a matrix with a rank one correction. Formally,

[A+ abT ]−1 = A−1 −A−1abTA−1

1− bTA−1a

Corollary 4.7.5. From Theorem 4.7.4 we can conclude that Bi+1 = Bi+ρisi(si)T −Biyi(yi)T
Bi

(yi)T Biyi .

Thanks to Corollary 4.7.5, we get that computing Bi+1 once we have Bi

takes O(n2).
We can do better, in terms of computational complexity.

4.7.2 Broyden-Fletcher-Goldfarb-Shanno
We can use directly Bi, defined as the inverse of Hi. Write (S) for Bi+1:
si = Bi+1yi =⇒ Bi+1 = arg min{

∥∥B −Bi
∥∥ : . . . }.

Hi+1 = Hi + ρiyiyiT − HisisiT
H

siT
Hisi

Bi+1 = (I = ρisiyiT )Bi(I − ρiyisiT ) + ρisisiT

= Bi + ρi[(1 + ρi(yi)T
Biyi)si(si)T − (Biyi(si)T + si(yi)T

Bi)]
(BFGS)

This formula proves to be more stable than the other one.
This method takes O(n2).
The two Bis, obtained from DFP and BFGS, are different although both

sensible. It turns out that the BFGS formula works better than the others, but
we can use a convex combination of the two.

Observation 4.7.2. How can we choose H1? The value at the first step will
make a difference n the results, at least for the first steps.

Let us see a couple of choices for B1:

• Scalar multiples of identity, but how to choose the scalar?

• Approximate the Hessian as a finite difference:

• Compute the gradient in n directions and approximate H. This will cost
O(n3), but it should be done only once.

Let us compute the space needed to store the Bis: order of n2 is still a lot.
What happens if we restrict to working with information of the last k operations?



102 CHAPTER 4. UNCONSTRAINED OPTIMIZATION

4.7.3 Poorman’s approach - limited memory BFGS
At each step we only considerBi−k and k rank one operations using an “unfolding”
approach. This operations cost n each, and we have k lines. Formally, given
V i = I − ρiyisiT

Bi+1 = (V i · V i−1 · . . . · V i−k)T
Bi−k(V i · V i−1 · . . . · V i−k)+

+ ρi−k+1(V i · . . . · V i−k+1)T si−k+1 · (si−k+1)T · (V i · . . . · V i−k+1)+

+ ρi−k+2(V i · . . . · V i−k+2)T si−k+2(si−k+2)T · (V i · . . . · V i−k+2) + . . .+ ρisisiT

The problem is that Bi−k takes O(n2) space. We can optimize if we choose Bi−k

to be simpler, say a multiple of the identity, or finite difference of the gradient.
Then the space and time complexity is O(kn).
I need to tune the algorithm to find the right k which gives me enough precision
and also keeps the computational cost low.

Final observation of quasi Newton methods

We may notice that this variation of Newton method doesn’t get trapped
in local minima, as Newton method did. In the end, the fact that quasi
Newton isn’t that precise at the beginning may be a good feature.

4.8 Conjugate Gradient Method

� Do you recall?

In the gradient method, the angle between two consecutive directions
is exactly 90°, as can be seen in Figure 4.17. This behaviour leads to a
pretty slow convergence because the algorithm does not move smoothly,
but it kind of zig-zags.

We would like to take into account not only the subspace spanned by di+1

but we would like to optimize over larger and larger subspaces (spanned by di

and di+1).

Definition 4.8.1 (Q-conjugate). Let v and w be vectors in Rn. We say that v
ad w are Q-conjugate if (v)T

Qw = 0.

We would like pick a direction to be Q-conjugate with all the previous
iterations. The point is that we can’t take into account all the previous directions,
but we will see that we only need the previous direction to obtain all the
information we need.



4.8. CONJUGATE GRADIENT METHOD 103

Figure 4.17: Geometric idea on how the new direction is chosen.

Algorithm 4.8.1 Pseudocode for Conjugate Gradient method for
Quadratic functions.

1: procedure CGQ(Q,q,x, ε)
2: d− ← 0;
3: while (‖∇f(x)‖ > ε) do
4: if (d− = 0) then
5: d← −∇f(x);
6: else
7: β = (∇f(x)T

Qd−)/((d−)T
Qd−);

8: d← −∇f(x) + βd−;
9: end if

10: α← (∇f(x)T d)/(dTQd);
11: x← x + αd;
12: d− ← d;
13: end while
14: end procedure

The number of iterations needed to converge is proportional to the clusteri-
zation of the eigenvalues of the matrix Q.

The algorithm that was presented is for quadratic functions, but the same
algorithm works for non quadratic function as well, as long as we change the
formula for β.

The pseudocode of Algorithm 4.8.2 is referred to Fletcher-Reeves’ definition
of βi βi =

∥∥∇f(xi)
∥∥ /∥∥∇f(xi−1)

∥∥2.

This algorithm converges in at most n iterations.



104 CHAPTER 4. UNCONSTRAINED OPTIMIZATION

Algorithm 4.8.2 Pseudocode for Conjugate Gradient method with
Armijo-Wolfe’s update

1: procedure CGA(Q,q,x, ε)
2: ∇f− = 0;
3: while (‖∇f(x)‖ > ε) do
4: if (∇f− = 0) then
5: d← −∇f(x);
6: else
7: β =

∥∥∇f(xi)
∥∥2
/‖∇f−‖2;

8: d← −∇f(x) + βd−;
9: end if

10: α← AWLS(f(x + αd));
11: x← x + αd;
12: d− ← d;
13: ∇f− ← ∇f(x);
14: end while
15: end procedure

We have three different formulas for βi, which coincide in the quadratic case.

1. Polak-Ribière: βi = [∇f(xi)T (∇f(xi)−∇f(xi−1))]
‖∇f(xi−1)‖2

2. Hestenes-Stiefel: βi = ∇f(xi)T (∇f(xi)−∇f(xi−1))
(∇f(xi)−∇f(xi−1))T di−1

3. Dai-Yuan: βi =
∥∥∇f(xi)

∥∥2

(∇f(xi)−∇f(xi−1))T di−1

Some of these algorithms require some hypotheses on the function in order
for the conjugate method to converge.

1. Fletcher-Reeves requires m1 < m2 <
1
2 for (A) ∩ (W’) to work;

2. (A) ∩ (W’) 6=⇒ di of Polak-Ribière is of descent, unless βi
P R = max{βi, 0}.

Sometimes it happens that the algorithm gets stuck because of a bad direction.
In those cases, it is crucial to restart from scratches.

The idea of taking the gradient and modify it instead of multiplying by a
factor, adding the previous direction.

It’s possible to design hybrids between quasi-Newton and conjugate method.

4.9 Deflected Gradient Methods
The idea behind this family of algorithms, is to determine the next position
xi+1 using the gradient and summing to it something else that gives us more
information.



4.9. DEFLECTED GRADIENT METHODS 105

This kind of algorithms work also in cases in which the gradient isn’t contin-
uous.

This methods use the information about the previous iterations without
exploiting properties about the second order derivative.

4.9.1 Heavy ball gradient method
The intuition behind this algorithm may be expressed through the following
metaphore: an object is moving in the space and it’s subject to a force. We can
observe that the heavier the object, the stronger should be the force imposed in
order to make it describe a certain trajectory.

In this interpretation, we may define the (i+ 1)-th iteration as

xi+1 ← xi − αi∇f(xi) + βi(xi − xi−1),

where βi is called momentum, xi heavy and ∇f(xi) force.
This is not a descent algorithm: we are not choosing a moving direction and

then performing line search for picking a proper step size. We have no guarantee
that the value of the function after one iteration will be smaller than the previous
one.
The first thing to do is to choose αi and βi properly.
We can prove for some cases that these methods are better than gradient method,
although they aren’t as good as Newton or quasi Newton. Their strength resides
in their simplicity though.

Notice that if the smaller eigenvalue is not zero (i.e. quadratic case) we have
a close formula to choose α and β independently from the iteration:

α = 4(√
λmax +

√
λmin

)2 , β = max
{∣∣∣1−√αλmin

∣∣∣, ∣∣∣1−√αλmax

∣∣∣}2

We may observe that the step we take is something that goes like 1
L , where

L is the Lipschitz constant, since λmin is very small. With these choices the rate
is the following. We observe that in the gradient the rate is the same, although
there aren’t the square roots∥∥∥∥xi+1 − x∗ ≤

(√
λmax −

√
λmin√

λmax +
√
λmin

)∥∥∥∥ · ∥∥xi − x∗
∥∥

An alternative idea could be choosing βi and finding αi using line search.
A possible issue is that we don not know if we are moving along a descending
direction, but in this method it is perfectly acceptable not to make any movement
at a single step (notice that in gradient method if one step has size 0 then we
will not move anymore).

βi is seen as an hyper-parameter, hence its value is tuned running the
logarithm several times.



106 CHAPTER 4. UNCONSTRAINED OPTIMIZATION

Figure 4.18: On the left side Newton method and on the right side the heavy ball
method.

The plot of the convergence of the heavy ball method gives a graphical idea
of the fact that the direction isn’t orthogonal to the one at the previous iteration,
since we have the gradient plus some quantity.

In particular, the bigger βi the “less orthogonal” the steps are. This feature
allows the algorithm to have good performances on elongated functions.

4.9.2 Accelerated gradient
This method works only on convex functions, it has some similarities with heavy
ball, but it’s slightly different.

Algorithm 4.9.1 Pseudocode for accelerated gradient method.
1: procedure ACCG(f,∇f,x, ε)
2: x− ← x;
3: γ ← 1;
4: repeat
5: γ− ← γ;
6: γ ← (

√
4γ2 + γ4 − γ2 )/2;

7: β ← γ( 1 / γ− − 1 );
8: y← x + β( x − x− );
9: g← ∇f(y);

10: x− ← x;
11: x← y− ( 1 /L )g;
12: until (‖g‖ > ε)
13: end procedure

The rational behind this algorithm is the following: When we are in a certain
point at a certain iteration, we go on a little bit βi and we end up in a point y.
The gradient is computed in that point and used to choose the next point.

If we choose γ optimally then the quadratic approximation is very close to
the function. We want to find the value for γs that gives best results in the
worst case.



4.10. INCREMENTAL GRADIENT METHODS 107

Figure 4.19: We build a linear model, which is a lowerbound for the function, then
we build a quadratic model, which is above our function.

We can prove that the error
∥∥f(xi)− f∗

∥∥ ≤ σi(f(xi)− f∗)↘ 0 is multiplied
by this factor δi, that goes like the inverse of i2.

Notice that if we choose α small, it will always be small.
The convergence is sublinear.

Theorem 4.9.1 (Optimality of accelerated gradient). If the function isn’t

strongly convex no algorithm has better convergence than
∣∣f(xi)− f∗

∣∣ = 3L
∥∥x1−x∗

∥∥2

32(i+1)2 .

Observation 4.9.1. This theorem tells us that this algorithm never gets worse

than
∣∣f(xi)− f∗

∣∣ = 3L
∥∥x1−x∗

∥∥2

32(i+1)2 , but this doesn’t imply that this method is fast
on average. The state of the art provides a lot of different formulas for β, which
of the ones leads to some theoretical results.

From now on we will move towards a different family of functions, that aren’t
even differentiable, hence we can’t compute the gradient.

4.10 Incremental Gradient Methods
This method has good performances in real world machine learning cases, where
the function is differentiable but we do not want to compute the gradient.

Let I = {1, . . . ,m} be the set of observations, let X = [xi ⊂ X ]i∈I be the
set of inputs and let y = [yi]i∈I be the set of outputs. Our goal is to explain y
from X.

Since these vectors are uniformly distributed over the space (at least this is
our hypothesis) when they get summed we expect some of them to cancel out.

The idea is to rewrite the problem as learning a linear function in the feature
space, formally min

{∑
i∈I l(yi, < Φ(xi),w >) : w ∈ Rn

}
, where l( · , · ) = is



108 CHAPTER 4. UNCONSTRAINED OPTIMIZATION

called loss function and Φ : Rn →M(n,m,R) is a map from the input space
to the feature space.

We are now interested in computing the gradient, which is not hard to compute
since the function is linear: ∇f(w) =

∑
i∈I ∇f i(w) =

∑
i∈I −Ai(yi −Aiw).

The issue here is that computing the gradient, although it’s the gradient
of a very simple function, takes too long (since there are too many vectors in
machine learning datasets).

To overcome this problem we choose to restrict to only a subset of observations.
How can we choose such set? Randomly, of course.

At this point the algorithm is not deterministic anymore, but it is completely
stochastic.

The intuition behind this algorithm is to take only one observation, compute
what is needed on this observation and make a small step.

An online application may be a sensor that produces hundreds of outputs
per second; Storing each of them is unfeasible. They should be used to infer
some information and then thrown away.

We study the converge of this kind of algorithms from a stochastic point of
view.

In machine learning we always need some regularization, because the tuning
of hyper-parameters clearly takes into account only the error in the samples that
have been seen. Let us regularize the model as follows

min
{ ∑

i∈I

l(yi, < Φ(xi),w >) + µΩ(w) : w ∈ Rn
}

The usage of regularization may be useful, since we want to keep close to the
minimum, without reaching it (because it would mean overfitting). It is enough
to change slightly the problem and then solve it.

The regularization hyper-parameter Ω(w) may be chosen as follows:

1. Lasso regularizer (best known): Ω(w) = ‖w‖1;

2. In order to increase sparsity: Ω(w) = ‖w‖2
2;

3. Leading to feature selection: many wj = 0 as possible.

Ω function is not differentiable, so the function gets non differentiable, as
an example look at Figure 4.20, which represents the plot of f(w1, w2) =
(3w1 + 2w2 − 2)2 + 10(|w1|+ |w2|).

If we sit in a kinky point it might be the case that we choose a descent
direction or we do not, hence we move away from the minimum or if it is reached
the non-differentiability does not allow to identify that we are in the minimum. In
detail, gradient descent methods work because at a certain point the movement,
obtained as product between the gradient and the step size, is 0. But this cannot
happen if the gradient does not vanish, because it is not defined.



4.11. SUBGRADIENT METHODS 109

-0.1 -0.05 0 0.05 0.1 0.15 0.2
-0.1

-0.05

0

0.05

0.1

0.15

0.2

Figure 4.20: This function has a lot of kinky points.

4.11 Subgradient Methods
It is often the case that the objective function under consideration is not
differentiable and in such situation we need to use different tools to be sure to
move towards the optimum.

� Do you recall?

Let us rewrite here the definitions introduced in Section 3.6, namely
subgradient and subdifferential.
Let f : Rn → R. We say that s ∈ Rn is a subgradient of f at point
x ∈ Rn if ∀y ∈ Rn the following holds:

f(y) ≥ f(x) + sT (y− x)

Under the same hypotheses we call subdifferential the set of all possible
subgradients at x ∈ Rn.
Formally,

∂f(x) := {s ∈ Rn : s is a subgradient at x}

Example 4.11.1. Let us assume that we know the minimum point x∗ ∈ Rn for
f : Rn → R and we are in x at the current iteration. We would like to move
towards x∗ using only the information provided by the subdifferential. (−)∂f(x)
is convex and compact and all its elements (−)s ∈ ∂f(x) (subgradients) “point
towards x∗”. Formally, < s,x∗ − x >< 0.

Subgradient methods are thought for convex functions that are not
differentiable in the whole domain.
The intuition behind subgradient methods is to move in the direction of a
specific subgradient (−s), but with a small step-size αi, because if the step is



110 CHAPTER 4. UNCONSTRAINED OPTIMIZATION

- 1.0 - 0.5 0.0 0.5 1.0

- 1.0

- 0.5

0.0

0.5

1.0

x*

Figure 4.21: There are many different subgradients in x. We pick the one with
minimum norm among the ones which have a negative scalar product with x − x∗.

too large we may end up in a point which is actually further from x∗ than the
previous step. In that new point we may find a direction and perform line search,
because that point is not kinky. In this context we will not try to minimize
‖f(x)− f(x∗)‖, but we will minimize ‖x− x∗‖, because the function may zigzag
near to that point. It goes without saying that choosing a too small value for α
leads to a too slow convergence speed.

� Do you recall?

?? of last lecture: let f : Rn → R be a convex function, ∀s ∈ ∂f(x),∀ y ∈
Rn lis equivalent to say f(y) ≥ f(x)+sT (y−x). This is a characterization
of the function with respect to the model.

Let us assume we know the minimum point x∗. We observe that the scalar
product between the subgradient and the direction we should choose is negative.
Formally, f(x∗) ≥ f(x)+ < d,x∗−x >, hence < d,x∗−x >≤ f(x∗)−f(x) ≤ 0,
where d ∈ ∂f(s).

We want to bound the distance between the point at the “next step” and
the optimum:∥∥xi+1 − x∗

∥∥2 (1)=
∥∥xi − αidi − x∗

∥∥2

(2)=
∥∥xi − x∗

∥∥2 +
∥∥αidi∥∥2 + 2 < xi − x∗,−αidi >

=
∥∥xi − x∗

∥∥2 + (αi)2∥∥di∥∥2 + 2αidiT (x∗ − xi)
(3)

≤
∥∥xi − x∗

∥∥2︸ ︷︷ ︸
≥0

+ (αi)2∥∥di∥∥2︸ ︷︷ ︸
>0

−2αidiT (f(xi)− f(x∗))︸ ︷︷ ︸
<0

(4.11.1)

Where (1)= follows from the definition of the step: xi+1 = xi − αidi, (2)= follows
from Corollary 2.4.6 and

(3)

≤ follows from the inequality we stated above.
The algorithm converges only if 2αidiT (f(xi)− f(x∗)) > (αi)2∥∥di

∥∥2.



4.11. SUBGRADIENT METHODS 111

This happens when αi is small enough, so that the linear part dominates the
quadratic part, but αi should not be too small either, according to Armijo’s
conditions.

Observation 4.11.1. The distance from the optimum is bounded by∥∥xi+1 − x∗
∥∥2 ≤

∥∥xi − x∗
∥∥2 + (αi)2∥∥di∥∥2 − 2αidiT (f(xi)− f(x∗))

(1)=
∥∥xi − x∗

∥∥2 + (αi)2 − 2αi (f(xi)− f(x∗))
‖di‖2

(2)

≤
∥∥x1 − x∗

∥∥2 +
i∑

k=1
(αk)2

Where (1)= is obtained normalizing the step direction and
(2)

≤ comes from adding
all the steps from the first iteration.

If the series of the squares of step sizes does not diverge, then the sequence
does not diverge as well, hence it converges somewhere, say x̄.

The convergence of the series of the squares may be obtained using the
following

Definition 4.11.1 (Diminishing-Square Summable). We term a series that
diverges, while the series of the squares of the terms converges, as diminishing-
square summable.

Formally,
(DSS)

∞∑
i=1

αi =∞ ∧
∞∑

i=1
(αi)2

<∞.

Fact 4.11.1. Assuming the function convex, definite in all its domain, and
bounded (hence, di ≤ L) we claim that the sequence of the stepsizes is a
diminishing-square sequence.

Proof by contradiction. Let us assume f(xi)− f∗ ≥ ε > 0, ∀i. Then,

∥∥xi+1 − x∗
∥∥2 ≤

∥∥x1 − x∗
∥∥2 − δ ·

i∑
k=1

αk +
i∑

k=1
(αk)2

The contradiction is due to the fact that as i→∞ the right-hand side goes
to −∞.

This family of algorithms is clearly incredibly robust in theory, but in practice
it does not work very well.

Let us make an experiment: let us suppose we know the minimum of the
function f .

Definition 4.11.2 (Polyak’s stepsize). Let f be our convex objective function
and let x∗ be the optimum for f . We term Polyak’s stepsize:

(PSS) αi = βi (f(xi)− f(x∗))
‖di‖



112 CHAPTER 4. UNCONSTRAINED OPTIMIZATION

where β ∈ (0, 2).

Fact 4.11.2. Let f : Rn → R be a convex, bounded function and let βi = 1.
Then

(f(xi)− f(x∗))2

‖di‖2 ≤
∥∥xi − x∗

∥∥2 −
∥∥xi+1 − x∗

∥∥2

Proof. From Equation (4.11.1) and by substituting αi we get

∥∥xi+1 − x∗
∥∥2 ≤

∥∥xi − x∗
∥∥2 + (αi)2 − 2αi (f(xi)− f(x∗))

‖di‖2

=
∥∥xi − x∗

∥∥2 + (f(xi)− f(x∗))2

‖di‖2 − 2(f(xi)− f(x∗))
‖di‖

(f(xi)− f(x∗))
‖di‖2

Da finire

Although we do not know the optimum, let us assume that we know it and
compute the efficiency.
Since we know that the sequence is bounded, we know that the objective function
is globally Lipschitz (the norm of the gradient is bounded above).
The point is that the sequence {x1} is not necessarily monotone, so we pick the
so-called record value of best value (f i = min{f(xh) : h = 1, . . . , i})

(f i − f(x∗))2

L2 ≤ (f(xi)− f(x∗))2

‖di‖2 ≤
∥∥xi − x∗

∥∥2 −
∥∥xi+1 − x∗

∥∥2

Summing for i = 1, . . . , k we obtain a telescopic series:

∥∥x1 − x∗
∥∥−∥∥∥��x2 − x∗

∥∥∥+
∥∥∥��x2 − x∗

∥∥∥−∥∥∥��x3 − x∗

∥∥∥+· · ·+
∥∥∥��xk − x∗

∥∥∥−∥∥xk+1 − x∗
∥∥

Hence resulting in

k ·
(fk − f(x∗))2

L2 ≤
∥∥x1 − x∗

∥∥2 −
∥∥xk+1 − x∗

∥∥2 ≤
∥∥x1 − x∗

∥∥2 = R

which is equivalent to (fk − f(x∗))2
≤ R2L2

k , which is again equivalent to
fk − f(x∗) ≤

√
RL
k , where L is the Lipschitz constant.

The issue here is that the convergence is sublinear: k ≥ 1
ε2 .

Theorem 4.11.3. Take an algorithm that uses only the subgradient. It’s possible
to construct a function that makes the algorithm converge with sublinear speed.
Hence, we cannot do better.



4.11. SUBGRADIENT METHODS 113

It comes without saying that although this algorithm is not very good it is the
“less bad” it can be.
There are some lucky cases in which we do know the optimal value, but this is
not the case usually.

4.11.1 Target level stepsize
Let us assume f(x∗) is unknown. The target level stepsize algorithm is used
to approximate it iteratively The only information available is that this value is
below the function value at any possible iteration.

The rationale behind this algorithm is to assume to know the optimal value
and as soon as we realize it is not correct we change it.

Let us first give an informal description of the algorithm:

• δ is the displacement: how much below the function is with respect to the
best value obtained so far;

• reference value frec = f . At the beginning is the value at the first iterate
and then we define the target value as the difference between the reference
value and some δ (at the beginning δ0).

Algorithm 4.11.1 Pseudocode for target level stepsize.
1: procedure SGPTL(f, g,x, imax, β, δ0, R, ρ)
2: r ← 0;
3: δ ← δ0;
4: fref ← frec ← f(x);
5: i← 1;
6: while (i < imax) do
7: d = g(x);
8: α = β(f(x)− (fref − δ))/‖d‖2;
9: x← x− αd;

10: if (f(x) ≤ fref − δ/2) then
11: fref ← frec;
12: r ← 0;
13: else
14: if ( r > R ) then
15: δ ← δρ;
16: r ← 0;
17: else
18: r ← r + α ‖d‖;
19: end if
20: end if
21: end while
22: frec ← min{ frec , f(x) };
23: i← i+ 1;
24: end procedure



114 CHAPTER 4. UNCONSTRAINED OPTIMIZATION

Figure 4.22: There are two cases: either the function value is significantly below the
reference (for example δ

2 below the reference) or it’s not . If we are in the “happy case”
(we just move the reference to the best value). For what concerns the “unhappy case”,
if we are unhappy for 1 iteration, no problem. Two iterations? no problem. Many
iterations? Problem: after some iterations in which we are not improving it means that
we have to decrease the reference values. How? r is updated at each bad step and reset
when a good step occurs. When r gets too large we decrease δ and reset everything.

At this point we defined the algorithm, but for implementing it we need to
choose of a lot of parameters. A way to choose them is to use grid search or any
other kind of hyper-parameter tuning.

Two big issues of this algorithm are that it does not provide a good stopping
criterion and it is very sensitive to many parameters.

4.12 Deflected Subgradient Methods
Deflected Subgradient methods are also thought for convex functions
that are not differentiable in the whole domain. The idea is to use the same
trick of ball-step (also called primal-dual). We are lying in xi and we would
like to move toward xi+1 without getting out of the ball with a certain radius
around x∗.

Figure 4.23: Representation of deflected subgradient method.

Let us assume that our function was differentiable. The subgradient method



4.13. SMOOTHED GRADIENT METHODS 115

collapses to the gradient method and we know that the gradient method does
not provide a good convergence. Yet, deflection is possible: di = γigi + ( 1 −
γi )di−1, xi+1 = xi −αidi. We can prove that di approximates the subgradient.
We can also prove that the algorithm converges in the end. The parameters of
this algorithm are two: β (stepsize) and γ (deflection). In order to choose them
we have two different approaches:

Stepsize-rescricted ≡ deflection-first. We first choose β and when choosing
α we need to take into account β: αi = βi(f(xi)−f∗)

‖di‖ ∧ βi ≤ γi “as deflection
↗, stepsize has to ↘”;

Deflection-restricted ≡ stepsize-first. We first choose γ, then we pick a
step size that depends on γ:

(DSS) ∧
αi−1

∥∥di−1
∥∥

(f(xi)− f∗) + αi−1

∥∥di−1∥∥ ≤ γi

“as f(xi)→ f∗, deflection ↘”

This algorithm gets the optimal O(1/ε2) on average, sadly not worst case.

4.13 Smoothed Gradient Methods
Smoothed gradient methods are also thought for convex functions that
are not differentiable in the whole domain.

Intuitively, smoothed gradient methods “fix” the kinky points by making
the function smooth in those points.

Definition 4.13.1 (Lagrangian function). Let f : Rn → R be a function of the
following shape:

f(x) = max{xTAz : z ∈ Z}

where Z is convex and bounded.

Let us assume that Z is also compact (which is equivalent to saying that it
is closed and bounded).

Example 4.13.1. A graphical example in the case of f : R → R s.t. f(x) =
|x| = max{x,−x} = max{zx : z ∈ [−1, 1]} is shown in Figure 4.24.

In the case of the absolute value, the nifty trick is “to make it have only one
optimal solution” in the point 0.

This result is obtained by adding a small quadratic term: f(x) = max{xTAz−
µ‖z‖2 : z ∈ Z}. This trick is depicted in two dimension in Figure 4.25. At
this point the new function fµ is not the original function anymore, but it is
very close to it whenever the constant µ is small.
Notice that this new function is smooth (differentiable) and it might be not very
easy to compute once the value for µ was chosen.



116 CHAPTER 4. UNCONSTRAINED OPTIMIZATION

Figure 4.24: Let us take the absolute value function f(x) = |x|. This function would
be differentiable, if it wasn’t for some nasty points (in this case 0, were the optimization
problem has many optimal solutions). In 0 there are many subgradients, so it has
many optima.

Figure 4.25: Geometric intuition of the usage of variable µ.

In general, we need µ to be close to 0 but not too close, because for µ = 0
the function is not differentiable.

At this point we are in the situation of fµ(x) ≤ f(x) ≤ fµ(x) + µR, such
that as µ↘ 0, “arg min{ fµ(x) } → x∗”.

The new function is not only convex, but it is also Lipschitz continuous
and its gradient ∇fµ is L-Lipschitz with L = ‖A‖2

/µ, but it is “less and less
Lipschitz” as µ↘ 0.

Fact 4.13.1. If f∗ > −∞ and picking a very special value of µ (µ = ε/(2R)),
then an appropriate ACCG obtains f(xi)− f∗ ≤ ε for i ≥ 4 · ‖A‖ · ‖x∗‖ ·

√
R/ε.

We observe that the convergence is much better, because it depends on
O(1/ε) instead of O(1/ε2).



4.14. BUNDLE METHODS 117

Figure 4.26: At the beginning we will make a lot of bad steps (the upper gray line).
We can improve (pick the black line) changing the ε value and we obtain something
that looks more stable. The more precision we want, the smaller the step we make. At
the ending it pays, but at the beginning it is not so.

4.14 Bundle Methods
4.14.1 Cutting-plane algorithm
We cheated to get first order information, we want to do more. We want to
cheat and have also the second order information.

We want to use the same idea of limited memory of quasi-Newton methods.
Using some limited memory of the Hessian, in order to understand th curvature.

The point is that the directional derivatives are defined and (if computed
massively) give me a hint of the curvature of the function (cfr. Figure 4.27).
Notice that it is not possible to build a matrix, because it is not defined.

Figure 4.27: The idea is that we do not compute a subgradient and discard it. We
store it, thus resulting in a model

Let us say we performed i iterates, hence we computed i subgradients and
function values. Let us store them: B = {(xi, f i = f(xi), si ∈ ∂f(xi))} ≡
bundle of first-order information.

We can now define a piece wise linear function defined as the maximum of
the first order model:

fB(x) = max{f i + siT (x− xi) : (xi, f i, si) ∈ B}



118 CHAPTER 4. UNCONSTRAINED OPTIMIZATION

At this point we can apply Newton’s method: first we minimize the model
and then use the minimum as next point. We collect information in that specific
point and then we repeat.

Notice that the model is always below the objective function (fB(x) ≤
f(x) ∀x), hence min{fB(x)} ≤ f∗, so x∗

B ∈ argmin{fB(x)} ≈ x∗.
This function has many kinky points, so how to minimize it? Add linear

constraints, so that methods like simplex can be used.

min{ fB(x) } = min{ v : v ≥ f i + siT (x− xi), where (xi, f i, si) ∈ B}

f

fB

x

f

fB

x

Figure 4.28: A geometric representation of how the model (blue line) changes after
one iteration.

At this point we have obtained both an upper-bound and a lower-bound, which
go one towards the other.
The problem is that at each step we need to solve a minimization problem and
the convergence is very slow.

It’s also possible that the blue function (the model) does not have a minimum
(unbounded below).

How to overcome this problem? Use so-called bundle methods.

4.14.2 Bundle methods
The intuition behind bundle methods is to keep close to the point where the
model corresponds to the function, because the further we get the more distant
from the function.

A way to express this is to add a quadratic quantity to the function that
grows when we move outside the current point.

Definition 4.14.1 (Stabilized master problem). We term stabilized master
problem the following

min
{
fB(x) + µ‖x− x̄‖2

2

}
This improved model cannot be unbounded below because the function is
quadratic, but we need to choose µ and x̄ wisely. Notice that µ accounts
for the curvature of the parabola, but for wrong choices of mu the interception
with the linear model is not placed properly.



4.14. BUNDLE METHODS 119

f

fB
v*

x
x*

Figure 4.29: The interception between the blue line and the quadratic red line is the
point where the minimum is placed

A possible way is to move the stability center whenever the current value is
better the the best encountered so far.

Algorithm 4.14.1 Pseudocode for Bundle Method.
1: procedure PBM(f, g, x̄,m1, ε)
2: choose µ;
3: B ← {(x̄, f(x̄), g(x̄))};
4: while ( true ) do
5: x∗ ← arg min{fB(x) + µ‖x− x̄‖2

/2};
6: if (µ ‖x∗ − x̄‖2 ≤ ε) then
7: break;
8: end if
9: if (f(x∗) ≤ f(x̄) +m1(fB(x∗)− f(x̄))) then

10: x̄← x∗; . Serious Step (SS)
11: possibly decrease µ;
12: else
13: possibly increase µ; . Null Step (NS)
14: end if
15: B ← B ∪ ( x∗ , f(x∗) , g(x∗) );
16: end while
17: end procedure

Notice that this algorithm allows not to move from an iteration to the other,
but the information computed is used to mode towards a better point.
The bundle method converges in few steps, although each step is quite costly.

We reached a point where for solving an unconstrained problem we need
to solve a constrained one. For this reason, we will introduce in next chapter
constrained optimization problems.



120 CHAPTER 4. UNCONSTRAINED OPTIMIZATION



Chapter 5

Constrained Optimality

5.1 Constrained Optimization
In this lecture we address the problem of finding the optimum of a function in
a subset of its domain, called X. The term optimum differs from the minimum,
because the optimum in that subset may not be a minimum of the whole function.

f∗ = min{ f(x) : x ∈ X }
Definition 5.1.1 (Local optimum). Given a function f and a constraint set X,
we denote local optimum the point where the function assumes the minimum
value inside the set X. Formally, min{f(x) : x ∈ B(x∗, ε) ∩ X} for some
ε > 0.

Notice that the only points in which the constraint adds some information
are the ones on the boundary, as shown in Figure 5.1

Figure 5.1: The red line is level set of the function corresponding to the smallest
value that touches the set X. The point in the intersection is not a saddle point of the
function f , although it is the minimum.

There are two kinds of constraints:
Fake ones: this first kind is such that the minimum of the function lies in the

interior of the set X, hence there is no need to use the constraints at all
and we can impose ∇f(x) = 0;

121



122 CHAPTER 5. CONSTRAINED OPTIMALITY

Real ones: when the optimal is on the boundary. This is the case of linear
functions, because the gradient is constant ∇f(x) = c.

At this point we want to decide if a point on the boundary is an optimum. In
this context it is important how the boundary is defined.

5.1.1 Linear equality constraints
Le us define a minimum problem subject to linear equality constraints:

min{f(x) : Ax = b}

where rk(A) accounts for the number of linearly independent rows.
Let us assume that there are not linearly independent rows in A, then or this
behaviour is reflected in B or the system does not have any solution.
In the case of presence of linearly dependent columns such columns may be
eliminated to ease the computation without loss of information.

A linear equality constraint is an hyperplane, as shown in Figure 5.2.

Ax
 =

 b

Ax
 =

 b

x

Figure 5.2: Linear constraint and a point on the boundary.

Ax
 =

 b

x

f(x)

Ax
 =

 b

x

f(x)

A

Figure 5.3: The gradient is orthogonal to the level set in that point, when the function
is smooth. The same holds for matrix A.

Fact 5.1.1. Let A ∈ M(m,n,R) and let x ∈ Rn and b ∈ Rm, such that
rk(A) = m < n. Then the m constraints kill exactly m degrees of freedom.



5.1. CONSTRAINED OPTIMIZATION 123

Ax
 =

 b

x

f(x)

A

y

Ax
 =

 b

x

f(x)

A

y

d

Figure 5.4: If we take any other point in the space it has to be orthogonal to A. If
we take any other point y along the linear constraint, such point is not better than x,
because it is orthogonal to the gradient, hence the directional derivative is 0.

Proof. Let us “split” matrix A and vector x into two parts, as follows:

A =
(
AB AN

)
, x =

(
xB
xN

)
where AB ∈ M(m,R), AN ∈ M(m,n − m,R), xB ∈ Rm, xN ∈ Rn−m and
det(AB) 6= 0. The system becomes

ABxB +AN xN = b
(AB non singular) ⇓

xB +AB
−1AN xN = AB

−1b
⇓

xB = AB
−1(b−AN xN)

Thanks to Proposition 5.1.1, the original optimization problem can be expressed
through an optimization problem on a reduced space, because xB is fully
determined once computed xN. Formally,

min{r(w) = f(Dw + d) : w ∈ Rn−m} ((R))

where D =
(
−A−1

B AN

In−m

)
∈M(n, n−m,R) and d =

(
AB

−1b
0n−m

)
.

Fact 5.1.2. The gradient of the reduced function r : Rn−m → Rn is computed
as ∇ r(w) = DT∇ f(Dw + d).

Proof.

∂r(w)
∂w = ∂f(Dw + d)

∂w

= ∂f(Dw + d)
∂Dw + d · ∂Dw + d

∂w
= DT∇ f(Dw + d)



124 CHAPTER 5. CONSTRAINED OPTIMALITY

The fact that w∗ is an optimum implies that ∇ r(w∗) = 0.

AD =
(
AB AN

)
·
(
−A−1

B AN

In−m

)
=���−AB ·���AB

−1 ·AN +AN = 0.
Now the point is taking a multiple of matrix A, finding a feasible x and

corresponding w (because there is a bijection), then finding the value µ that
allows the equality.

Theorem 5.1.3. Let Ax = b be a linear system, where A ∈ M(m,n,R),

x ∈ Rn, b ∈ Rm and let w ∈ Rn−m such that x =
(
AB

−1(b−AN w)
w

)
. It is

equivalent to find a stationary point x for the original problem (P ) or finding the
stationary point w for (R). Formally, if ∃ µ ∈ Rm s.t. µTA = ∇ f(x) then
∇r(w) = DT∇ f(x) = 0, see Figure 5.5.

Definition 5.1.2 (Poorman’s Karush Kuhn-Tucker conditions). A point is a
good candidate for being a minimum of the constrained problem if and only if
it satisfies Poorman’s KKT conditions, namely the problem is feasible and
∃µ ∈ Rm s.t. µTA = ∇f(x).

Theorem 5.1.4. Let f be a convex function, then KKT conditions are enough
for optimality.

A very naive explanation of the theorem is that if the function is convex
also the restriction is convex and a stationary point of a convex function is a
minimum.

Our idea is to characterize the directions we can move along in order to
find new points that satisfy the constraint. Formally, Ax = b is our constraint
and we want to move towards x + d and stay in the feasible region. How?
A(x + d) = b⇔ Ax +Ad = b⇔ Ad = 0, since Ax = b. The only way to move
along the constraint is choosing a direction which scalar product with A is 0,
hence 0 scalar product with the gradient.

From now on we would like to study the behaviour on constrained problems
where the constraints are not equalities, but inequalities.

In order to do this we need some mathematical background.

5.1.2 Background for linear inequality constraints
Definition 5.1.3 (Tangent cone). We call tangent cone of X at x TX(x) = t.{

d ∈ Rn : ∃ {zi ∈ X} → x ∧ {ti ≥ 0} → 0 s.t. d = lim
i→∞

zi − x
ti

}
Theorem 5.1.5. Let C be a cone, ∀x ∈ C αx ∈ C, ∀α > 0.

Theorem 5.1.6. Given a function f , where x is a local optimum < ∇f(x),d >≥
0 ∀d ∈ TX(x).



5.1. CONSTRAINED OPTIMIZATION 125

x

X

Figure 5.5: When the boundary has this shape we can move along directions that
point inside the constraints. Tangent directions are not allowed.

x

X

TX(x)

x*

f(x*)
f(x)

Figure 5.6: Geometric representation of tangent cone, which is the region of the space
where we can pick the directions. The intuition is to zoom in x and the result of this
zooming is a cone. It is clear from this picture that we can only find a local optimum.

Proof. Proof by contradiction: Assume ∃d ∈ TX(x) such that< ∇f(x),d ><
0, but x is a local optimum.

By definition ∃X ⊃ {zi} → x and {ti} → 0 such that d *= lim
i→∞

zi−x
ti

.
First order Taylor f(zi)− f(x) =< ∇f(x), (zi − x) > +R(zi − x).

lim
i→∞

f(zi − x)
ti

= lim
i→∞

< ∇f(x), zi − x
ti

> +R(zi − x)
ti

= lim
i→∞

< ∇f(x), zi − x
ti

> + lim
i→∞

R(zi − x)
ti

*=< ∇f(x),d > + lim
i→∞

R(zi − x)
ti

(1)=< ∇f(x),d >

< 0

(5.1.1)

Where, (1)= follows from the fact that the residual of the Taylor’s model goes to 0:
lim

i→∞
R(zi−x)

ti
= 0.

Observation 5.1.1. The optimum of Theorem 5.1.6 is global when the function
is convex, because in that case X ⊆ x + TX(x). For a geometric idea see
Figure 5.7.



126 CHAPTER 5. CONSTRAINED OPTIMALITY

x

X

TX(x)

Figure 5.7: Convex function.

Observation 5.1.2. Notice that the converse of ?? (< ∇f(x),d >≥ 0 ∀d ∈
TX(x)⇒ x) does not hold.

Let us take f : R2 → R s.t. f(x) = x2 and the minimum problem
min{f(x) : x2 ≥ x3

1 }. The constraint looks like Figure 5.8.

Figure 5.8: Shape of the constraint.

Assume that we are sitting in x =
(

0
0

)
such that ∇f(x) =

(
0
1

)
.

x

f(x)

Figure 5.9: The gradient and the tangent cone.

We are lying in a saddle point, so x is not the optimum even if < ∇f(x),d >≥
0, ∀d ∈ TX(x).

Now we need a more manageable object for TX(x).

Definition 5.1.4 (Cone of feasible directions).
Let X be a set, we term feasible cone in a point x the set of all directions such
that there exist small but not 0 steps such that all the points on this direction are



5.1. CONSTRAINED OPTIMIZATION 127

feasible. Formally, a feasible cone is FX(x) = {d ∈ Rn : ∃ε̄ > 0 s.t. x+εd ∈
X, ∀ε ∈ [0, ε̄]}.

Fact 5.1.7. The properties of such cone are:

1. TX closed, FX in general not (hence the cone of feasible directions is the
tangent cone minus the tangent directions);

2. cl(FX) ⊆ TX , where cl(FX) is the closure of the cone of feasible directions;

3. If X convex then the cones coincide. Formally, TX and FX convex and
cl(FX) = TX .

Fact 5.1.8. The feasible cone is the of the set of all possible feasible directions.

We are now interested in finding a better characterization of the cone of
feasible directions FX and we will do so by working on the tangent cone TX ⊆ FX .

Let us enumerate 4 representations of the feasible region X:

First representation:

X = {x ∈ Rn : gi(x) ≤ 0 i ∈ I, hj(x) = 0 j ∈ J }

where I is the set of inequality constraints and J is the set of equality
constraints;

Second representation:

X = {x ∈ Rn : G(x) ≤ 0 , H(x) = 0}

where G = [gi(x)]i∈I : Rn → R|I| and H = [hi(x)]i∈J : Rn → R|J |;

Third representation: (hiding equalities)

X = {x ∈ Rn : gi(x) ≤ 0 i ∈ I, hj(x) ≤ 0 ∧ hj(x) ≥ 0 j ∈ J }

Fourth representation: (hiding inequalities into a single function)

X = {x ∈ Rn : g(x) = max{ gi(x) : i ∈ I } ≤ 0 i ∈ I, hj(x) = 0 ∈ J }

Definition 5.1.5 (Active constraints). We term active constraints at x ∈ X
the inequality constraints which are satisfied with the equality. Formally,

A(x) = {i ∈ I : gi(x) = 0} ⊆ I

Let us introduce some useful notation on the subject: let B ⊆ I a subset of
indices of inequality constraints.
We denote GB = [gi(x)]i∈B : Rn → R|B| the corresponding set of inequalities.
Notice that when choosing a moving direction we need to pay attention only to
active constraints and inequality constraints.



128 CHAPTER 5. CONSTRAINED OPTIMALITY

Definition 5.1.6 (First-order feasible direction cone). We term first-order
feasible direction cone at x ∈ X the set of all directions that satisfy equality
constraints and active constraints. Formally,

DX(x) = {d ∈ Rn : < ∇gi(x),d >≤ 0 i ∈ A(x) < ∇hj(x),d >= 0 j ∈ J }

Or equivalently, written in the form of the Jacobian,

DX(x) = {d ∈ Rn : (JGA(x)(x))d ≤ 0, (JH(x))d = 0}

Example 5.1.1. Let us examine the meaning of Definition 5.1.6 through an
example. Let us assume that the inequality constraints are the functions g1, g2,
shown in Figure 5.10(a) and in Figure 5.10(b) respectively. The directions
allowed for satisfying each of the constraints should point towards the gray part,
hence have a negative scalar product with both ∇g1(x) and ∇g2(x), hence the
first-order feasible cone is the one shown in Figure 5.10(d).

g1(x) ≤ 0

g1(x)

x

(a)

g2(x) ≤ 0

x

g2(x)

(b)

x

X

g1(x) g2(x)

(c)

x

X DX(x)

g1(x) g2(x)

(d)

Figure 5.10: Constraints and first order feasible direction cone.

Fact 5.1.9. The tangent cone is a subset of the first-order feasible direction
cone. Formally, TX(x) ⊆ DX(x).

We would like the first-order feasible direction cone to be exactly equal to
the tangent cone and this is almost always true, except for some pathological
cases.



5.1. CONSTRAINED OPTIMIZATION 129

Example 5.1.2. Let us have a function f to minimize subject to a linear and a
quadratic constraint:

min{f(x) : x1
2 + (x2 − 1)2 − 1 ≤ 0, x2 ≤ 0}

g1(x)

(a)

g2(x)

(b)

g2(x)

g1(x)

(c)

Figure 5.11: First-order feasible cone not coinciding with the tangent cone.

From Figure 5.11 we can see that there are no directions that at the same
time point towards the second order constraint and the first order constraint,
except from 0, therefore TX(x) = {0}.

Conversely, all the vectors with 0 as second component are included in the

first-order feasible direction cone, hence DX(x) =
{(

x1
0

)
s.t. x1 ∈ R

}
.

We would like to ensure we are not in one of these pathological cases and to
do this we introduce some conditions.

Fact 5.1.10. The following holds:

Affine constraints (AffC): Let gi and hj be affine constraints.

∀ i ∈ I ∀ j ∈ J TX(x) = DX(x) ∀x ∈ X

Slater’s condition (SlaC): Let gi convex ∀ i ∈ I and let hj affine ∀ j ∈ J if
it is possible to find a point x ∈ X that satisfies “inactively” each inequality
constraint, then the first-order feasible cone coincides with the tangent cone.
Formally if ∃ x̄ ∈ X s.t. gi(x̄) < 0 ∀ i ∈ I, then TX(x) = DX(x) ∀x ∈ X;

Linear independence (LinI): A certain point x̄ ∈ X ∧ allows the equality
between the first-order feasible cone and the tangent cone if the gradient
of both the equality and inequality constraints are linearly independent.
Formally, if {∇gi(x̄) : i ∈ A(x̄)} ∪ {∇hj(x̄) : j ∈ J } are linearly
independent, then TX(x̄) = DX(x̄)

It goes without saying that we cannot check all the directions in order to
exclude the nasty pathological cases.



130 CHAPTER 5. CONSTRAINED OPTIMALITY

Definition 5.1.7 (Dual cone). Let C be a polyhedral cone C = {d ∈ Rn : Ad ≤

0}, for some A =


A1
A2
...
Ak

 ∈M(k, n,R).

We term dual cone C∗ = {c =
k∑

i=1
λiAi : λ ≥ 0 }.

A bi-dimensional example of primal and dual cone is shown in Figure 5.12.

A2A1

(a)

A2A1

(b)

Figure 5.12: Primal and dual cone.

Lemma 5.1.11 (Farka’s lemma). Any vector x ∈ Rn either belongs to the dual
cone or there exists a vector d in the polyhedral cone which has a negative scalar
product with it, see Figure 5.13. Formally, either ∃λ ≥ 0 s.t. c =

∑k
i=1 λiAi or

∃d s.t. Ad ≤ 0 ∧ < c,d >> 0.

A2A1

c

(a)

A2A1

c

d

(b)

Figure 5.13: Graphical example of Farka’s lemma.

Theorem 5.1.12 (Karush-Kuhn-Tucker Theorem). Let us assume that we found
an optimal solution x∗. Then the anti-gradient in x∗ can be obtained as the
linear combination of the gradients of the active inequality constraints and the



5.2. DUALITY 131

equality constraints. Formally, ∃λ ∈ R|I|
+ and µ ∈ R|I| such that

∇f(x∗) +
∑

i∈A(x∗)

λi∇gi(x∗) +
∑
j∈J

µj∇hj(x∗) = 0

Notice that we did not impose µ ≥ 0. Let us take an equality constraint
hj(x) = 0. This is equivalent to write hj(x) ≤ 0 ∧ hj(x) ≥ 0, thus leading to
two different multipliers, say λ+

j and λ−
j . The term of the sum concerning hj

looks like this λ+
j ∇hj(x∗)− µ−

j ∇hj(x∗) = (µ+
j − µ

−
j ) · ∇hj(x∗), where both µ+

j

and µ−
j are ≥ 0, hence their difference (denoted by µj) may be either positive or

negative.

Fact 5.1.13. The Karush-Kuhn-Tucker conditions are also written as:

Feasibility: x ∈ X is equivalent to saying gi(x) ≤ 0 i ∈ I, hj(x) = 0 j ∈ J

KKT-G: ∇f(x) +
∑
i∈I

λi∇gi(x) +
∑

j∈J
µj∇hj(x) = 0

Complementarity Slackness:
∑
i∈I

λigi(x) = 0

Notice that the third condition expresses the fact that the constraint should
be active.

Fact 5.1.14. Let (P) be a convex problem such that the inequality and equality
constraint satisfy constraint qualification (they are affine functions). In this
case, if the Karush-Kuhn-Tucker conditions hold and then x is a global optimum.

At this point, we are left with the task of checking optimality in the case of
a non-convex function and this is obtained through the theory of duality.

5.2 Duality
Definition 5.2.1 (Lagrangian function). Let (P) be our constrained minimum
problem over f : Rn → R, where I is the set of the inequality constraints and
J is the set of the equality constraints. We term Lagrangian function the
following:

L(x, λ, µ) = f(x) +
∑
i∈I

λigi(x) +
∑
j∈I

µjhj(x)

where x is the variable and λ, µ are parameters.

Fact 5.2.1. According to KKT-G condition, a necessary condition for optimality
is that the gradient of the Lagrangian function is 0. Formally, ∇L(x, λ, µ) = 0.

So far, our algorithm had the following behaviour: suppose to be sitting in
a point x, check if the optimality condition holds (from Proposition 5.2.1 the
gradient of the Lagrangian should be 0). If x is not optimal, we should move
toward a new and hopefully better point x′.



132 CHAPTER 5. CONSTRAINED OPTIMALITY

boh
A first approach to use the Lagrangian function would be taking λ and µ

such that the Lagrangian is positive semidefinite.
But this is a too strict requirement, in fact we impose:

Definition 5.2.2 (Critical cone). Let us assume (x, λ, µ) satisfies (KKT). We
define the critical cone as

C(x, λ, µ) =

d ∈ Rn :
< ∇gi(x),d >= 0 i ∈ A(x) s.t. λ∗

i > 0
< ∇gi(x),d >≤ 0 i ∈ A(x) s.t. λ∗

i = 0
< ∇hj(x),d >= 0 j ∈ J


Theorem 5.2.2. Let us assume we have a point (x, λ, µ) that satisfies the
Karush-Kuhn-Tucker conditions and satisfies the linear independence of the
constraints. If x is local optimum then dT∇2

xxL(x, λ, µ)d ≥ 0 ∀ d ∈ C(x, λ, µ).
Informally, if the hypothesis holds, then the Hessian of the Lagrangian func-

tion is � 0 on the critical cone.

Observation 5.2.1. (x, λ, µ) satisfies (KKT) ∧ ∇2
xxL(x, λ, µ) � 0 on

C(x, λ, µ) then x local optimum.

We would like to say something more about λ and µ. Until now we considered
the Lagrangian as a function of x, but what if we consider the Lagrangian in
terms of λ and µ?

5.3 Lagrangian Duality
Definition 5.3.1 (Lagrangian relaxation). Let (P) be our constrained minimum
problem over f : Rn → R, where I is the set of the inequality constraints and J
is the set of the equality constraints. Let us consider the Lagrangian function on
such problem. We term Lagrangian relaxation the function where we fixed λ
and µ and minimize on x:

ψ(λ, µ) = min{L(x, λ, µ) : x ∈ Rn}

The relaxation leads to an unconstrained problem and we learnt how to solve
one of those.

This Lagrangian relaxation leads to the definition of lagrangian dual ψ.

Property 5.3.1. The dual function has the following properties:

1. ψ is concave, but ψ(λ, µ) = −∞;

2. Let x̄ be optimal in (Rλ,µ), then [G(x̄),H(x̄)] ∈ ∂ψ(λ, µ)

3. ψ is non differentiable, although f, gi and hj are, but if x̄ is unique then
ψ is differentiable and ∇ψ(λ, µ) = [G(x̄),H(x̄)]



5.3. LAGRANGIAN DUALITY 133

4. ∀ fixed λ ≥ 0, µ, x̄ ∈ X ψ(λ, µ) = min
x
L(x, λ, µ) ≤ L(x̄, λ, µ) ≤ f(x̄)

ψ(λ, µ) =



λ1g1(x̄)
...

λkgk(x̄)
λ1µ1(x̄)

...
λpµp(x̄)


is such that



g1(x̄)
...

gk(x̄)
µ1(x̄)

...
µp(x̄)


belongs to the supergradient.

Theorem 5.3.2 (Weak duality). ∀ fixed λ ∈ R+ ∪ {0}, µ ∈ R such that
ψ(λ, µ) ≤ v(P ) and let us take any feasible x̄ ∈ X and g(x̄) ≤ 0, h(x̄) = 0.

ψ(λ, µ) = min
x
L(x, λ, µ) ≤ L(x̄, λ, µ) ≤ f(x̄)

Proof.

ψ(λ̄, µ̄) = min
x
L(x, λ, µ)

= min
x

(
f(x) +

∑
i

λigi(x) +
∑

j

µjhj(x)
)

(*)

≤ f(x̄) +
∑

i

λ̄igi(x̄)︸ ︷︷ ︸
≤0

+
∑

j

µ̄jhj(x̄)︸ ︷︷ ︸
0

≤ f(x̄)

where
(*)

≤ holds because x̄ is feasible.

Thanks to Theorem 5.3.2, we obtained a lower bound for the optimum
value of the function, which means that we can use it as a stopping criterion.
Formally, let us assume we are sitting in a feasible point λ̄, µ̄ and x̄ then
ψ(λ̄, µ̄) ≤ f(x̄) ≤ ψ(λ̄, µ̄) + ε, hence we are far from the optimum of a factor ε.

In general, when dealing with lower-bounds, we are interested in maximizing
those, so that we have a more precise estimate of the real minimum, hence the
need of maximizing the Lagrangian relaxation, which is concave (although it is
not smooth). Formally,

(D) max{ψ(λ , µ ) : λ ∈ R|I|
+ , µ ∈ R|J | }

Notice that the constraints on λ are very easy, so the problem may be considered
somehow unconstrained.
We can use local methods to compute the maximum of this function.
If we are able to compute the gradient of ψ then we have the super-gradients of
the function f .

Is (P) equal to (D)? Yes, provided that everything is convex. In general the
Lagrangian gives a lower-bound, hence the maximum of the dual problem is a
lower-bound of the minimum of the primal problem. Formally,



134 CHAPTER 5. CONSTRAINED OPTIMALITY

v(D) ≤ v(P )

Example 5.3.1. Let us take a concave objective function min{−x2 : 0 ≤ x ≤
1}, such that its Lagrangian function is L(x, λ) = −x2 +λ1(x− 1)−λ2x. It goes
without saying that the Lagrangian function is unbounded below (upside-down
parabola).

Formally, ψ(λ) = min
x∈R

L(x, λ) = −∞, ∀λ ∈ R2, which means that the
Lagrangian dual is v(D) = −∞ < v(P ) = −1.

Theorem 5.3.3. Let us assume that f , g and h are convex, and constraints
qualification holds. If the problem has an optimum in x∗ then the value of the
primal and the value of the dual are the same. Formally,

TX(x∗)DX(x∗)⇒ v(D) = v(P )

Proof. Since x∗ is an optimum, the necessary KKT conditions hold, then we can
find (λ∗, µ∗) that satisfy the KKT with x.

Then our claim is that (λ∗, µ∗) is an optimal solution of the dual (D) and
the value of the dual is equal to the value of the primal.

x∗ is a stationary point for the Lagrangian function, since it satisfies the
KKT conditions then x∗ is exactly the minimum, since the Lagrangian function
is convex.

Hence, the value of the dual v(D) ≥ ψ(λ− ∗, µ∗) = L(x∗, λ∗, µ∗) = f(x∗) =
v(P ) ≥ v(D).

How many solution may ψ(λ, µ) have? In principle many, but if f is strongly
convex, than everything in the Lagrangian is strongly convex, then he solution
of ψ is unique and it is also differentiable, but typically not twice differentiable.
At this point, the Lagrangian dual has a single solution and the optimum of the
Lagrangian dual corresponds to an optimum for f .

We only translated a minimum problem on convex functions to another
minimum problem on other convex functions. We will see soon that in some
cases this approach is advantageous in others it is not.

5.4 Specialized Dual
5.4.1 Linear programs
Let us define a linear constrained program as

(P ) min{ cT x : Ax ≥ b }

For this problem, the Lagrangian function is defined as L(x, λ) = cT x + λ(b−
Ax) = λb + (c− λA)x, while the dual function is

ψ(λ ) = min
x∈Rn

L(x , λ ) =
{
−∞ if c− λA 6= 0
λb if c− λA = 0



5.4. SPECIALIZED DUAL 135

hence the dual problem is

(D) max {ψ(λ ) : λ ≥ 0 } ≡ max {λb : λA = c , λ ≥ 0 }

Since the Lagrangian is far from having an unique optimal solution the dual
does not have a unique maximum so v(D) 6= v(P ).

5.4.2 Quadratic programs
Let us define a quadratic constrained program as

(P ) min { 1
2‖x‖

2
2 : Ax = b }

expressed in the form of linear least-norm. For this problem, the Lagrangian
function is defined as

L( x , µ ) = 1
2‖x‖

2
2 + µ(Ax− b )

which is strictly convex and the stationary point is x = −µA, such that ∇xL =
x + µA = 0.

The dual function is

ψ(µ) = min
x∈Rn

L( x , µ ) = L(−µA , µ ) = −1
2µ

T (AAT )µ− µb

and the Lagrangian dual

(D) max{−1
2µ

T (AAT )µ− µb : µ ∈ Rm}

A more general form of a quadratic problem is the following

(P ) min { 1
2xTQx + qT x : Ax ≥ b }

where Q � 0, otherwise it is likely not to have a minimum. the dual problem is

(D) max { λb− 1
2vTQ−1v : λA− v = q , λ ≥ 0 }

In the case of strong strong duality ≡ v(P ) = v(D) (almost) always holds.
Solving the KKT system means solving the following(

Q AT

A 0

)
·
(

x
µ

)
=
(
−q
b

)
where the matrix is symmetric, but indefinite and its structure allows to employ
linear algebra techniques such as indefinite factorization and GMRES (or other
Krylov-type iterative methods). The details on how to solve a quadratic problem
with linear equality constraints is discussed in Section 6.1.



136 CHAPTER 5. CONSTRAINED OPTIMALITY

5.4.3 Conic programs
We can do duals of things that are not quadratic programs. Sometimes we want
to have non linear things to be able to draw different shapes.

Definition 5.4.1 (Conic program). We term conic program min{cx : Ax ≥K b},
where x ≥K y ≡ x− y ∈ K, where K is a convex cone.

Example 5.4.1. It is easy to see that the ≥ constraints we saw before are a
special case of conic program, where the conic is Rn

+.
−x1 − 2x2 ≤ 2
x1 + x2 ≥ 1
2x1 − x2 ≥ 0
Let us write −x1 − 2x2 − 2 = s0, x1 + x2 − 1 = s1 and 2x1 − x2 = s2, such

that s0, s1, s2 ≥ 0.
We have a mapping from Rn (where the variables live) to Rm (where the

constraints live) and Ax− b ∈ K.
Rather than writing s0, s1, s2 ≥ 0 we could write s0 ≥

√
s2

1 + s2
2 and this

would still be a conic program.

Figure 5.14: x3 ≥
√

x2
1 + x2

2 is a convex cone.

The idea is to hide the non linear part in the cone, in particular in ≥K . Let
us see what happens to cones depending on the function.

There are three interesting cones:

• K = Rn
+ ≡ sign constraints ≡ Linear Program;

• K = L = {x ∈ Rn : xn ≥
√∑n−1

i=1 x
2
i } ≡ Second-Order Cone (or Lorentz

cone) Program, that generalizes linear programs;

• K = S+ = {A � 0 } ≡ “�” constraints ≡ SemiDefinite Program.

Given the problem that looks like linear except for the cone.

Definition 5.4.2 (Conic dual). Conic dual: (D) max{ yb : yA = c , y ≥KD 0 },
where KD = { z :< z, x >≥ 0 ∀x ∈ K } is a dual cone.



5.5. FENCHEL’S DUALITY 137

Sometimes constraints qualification does not hold, since the conic program is
not linear sometimes.

Explicit form of second order cone program (SOCP) (“explicit data”Di, di, pi, qi)
min{cx : ‖Dix− di‖2 ≤ pix− qi i = 1, . . . ,m}.

It collapses to a linear program for Di = 0 and di = 0.
It turns out that the dual has just this explicit form:

max{
m∑

i=1
λidi + νiqi :

m∑
i=1

λiDi + νipi = c, ‖λi‖2 ≤ νi, i = 1, . . . ,m}

where the nui are the dual variables of the rightmost part, while the λi are
the dual variables of the leftmost part.

We can write the explicit form of semidefinite problems as min{cx :
n∑

i=1
xiA

i �

B}, where Ai, B ∈M(k,R).
There is an even more general form of duality, that we are going to introduce

next.

5.5 Fenchel’s Duality
Definition 5.5.1 (Fenchel’s conjugate). We denote Fenchel’s conjugate of
f f∗(z) = supx{zx− f(x)}.

We can observe that f∗ is always convex, even if f is not and it is closed if f
is.

The following functions are such that f∗ can be computed easily:

1. f(x) = 1
2 ‖x‖

2
2 =⇒ f∗(z) = 1

2 ‖z‖
2
2 (only function s.t. f∗ = f);

2. (‖·‖1)∗(z) = ßB∞(0,1)( z ), (‖·‖∞)∗(z) = ßB1(0,1)( z );

3. f(x) = max{gix − αi i ∈ I} =⇒ f∗(z) = min {
∑

i∈I αiθi :
∑

i∈I giθi =
z,
∑

i∈I θi = 1 , θi ≥ 0 i ∈ I }.

Fact 5.5.1. If we are minimizing the sum of two convex functions (P) min{f(x)+
g(x)}, this problem is the same of maximizing the sum of “almost” the two
conjugates: (D) −min{f∗(z) + g∗(−z)}.



138 CHAPTER 5. CONSTRAINED OPTIMALITY



Chapter 6

Constrained Optimization

6.1 Quadratic Problem with Linear Equality Con-
straints

Let A be a matrix in M(m,n,R), where m < n (otherwise the system is either
fully determined or impossible) and rk(A) = m. The constrained quadratic
problem may be written as

min
{

1
2xTQx + qT x : Ax = b

}
where Q � 0.
A way to solve this problem is through Karush-Kuhn-Tucker system:

(a)
(b)

[
Q AT

A 0

] [
x
µ

]
=
[
−q

b

]
(6.1.1)

where the first row (a) says that the gradient is a linear combination of the
normals of the gradient of the constraints and the second one is just feasibility.

Everything is linear here. This system is symmetric, although indefinite,
because it contains many 0s.

We are left with solving the KKT system:

Reduced KKT (Good for few constraints - m small) in this method we
first add the hypothesis of non-singularity to the matrix Q so we get the
following {

Qx +AT µ = −q (a)
Ax = b (b)

Multiply (a) by AQ−1{
A���Q−1

��Qx +AQ−1AT µ = −AQ−1q (a)
Ax = b (b)

139



140 CHAPTER 6. CONSTRAINED OPTIMIZATION

Multiply (b) by −1 and add to it (a){
Ax +AQ−1AT µ = −AQ−1q (a)
��Ax +AQ−1AT µ−��Ax = −AQ−1q − b (b)

Multiply (a) by A−1{
x +Q−1AT µ = −Q−1q (a)
AQ−1AT µ = −AQ−1q − b (b)

Isolate x {
x = −Q−1(AT µ + q) (a)
AQ−1AT µ = −AQ−1q − b (b)

Notice that 0 � AQ−1AT = M ∈M(m,R) and may be much smaller than
the original one, since its size depends on the number of constraints. The
issue here is that the matrix M is less sparse than both A and Q.

Null space method: (Good for number of constraints close to the
number of variables - m ≈ n) In this method we need no assump-
tion on Q. Let us resort the method we used in Proposition 5.1.1 on
constrained optimization. We can “split” matrix A and vector x into two
parts, as follows:

A =
(
AB AN

)
, x =

(
xB
xN

)
where AB ∈M(m,R), AN ∈M(m,n−m,R), xB ∈ Rm, xN ∈ Rn−m and
det(AB) 6= 0.
By replacing A and x in the equality constraints definition, we get ABxB +
AN xN = b ⇐⇒ xB = AB

−1 · (b − AN xN), hence resulting in x =
DxN + d, where

d =
(

b
0n−m

)
, D =

(
−AB

−1AN

In−m

)
∈M(m,n−m)

Notice that D is a basis of the null space (or kernel) of A and it is not
mandatory to build it like we did above, it is only important to obtain a
basis of the kernel.
Let us multiply (a) by DT and obtain

DT (Qx +AT µ) = −DT q
DTQx +DTAT µ = −DT q
DTQx +����(AD)T

µ = −DT q
DTQ(DxN + d) = −DT q

(6.1.2)



6.2. QUADRATIC PROBLEM WITH LINEAR INEQUALITY CONSTRAINTS141

Where in the last step we applied the definition x = DxN + d and hence,
(DTQD)xN = −DT (Qd + q).
We term H = DTQD ∈M(n−m,R) the reduced Hessian of the problem
and notice that whenever the number of constraints is close to the number
of variables this matrix is very small.

It is important to note that in order to solve an equality constrained problem
we can choose either the reduced KKT method or the null space method,
depending on the structure of our problem.

6.2 Quadratic Problem with Linear Inequality
Constraints

Let A be a matrix in M(m,n,R), where m < n (otherwise the system is either
fully determined or impossible) and rk(A) = m. The inequality-constrained
problem may be written as

(P ) min{f(x) : Ax ≤ b}

In general, it is possible that there is no solution for Ax ≤ b, hence the
problem is empty. In the rest of the course we will consider only problems that
have a solution.

6.2.1 Projected gradient method
Let us suppose that we are sitting in a point x such that there are two active
constraints A1 and A2, as displayed in Figure 6.1(a) and the anti-gradient points
inside the feasible cone DX . In this case, it is irrelevant to take into account
constraints A1 and A2.

A completely different scenario would be the one in which the anti-gradient
points outside of the cone of feasible directions given by the two constraints A1
and A2, as displayed in Figure 6.1(b). It is in this case that we choose as moving
direction the projection of the anti-gradient onto one of the constraints.

Among the multiple admissible directions, shown in Figure 6.2, we pick the
closest to the anti-gradient, which is the green arrow pointing to the right.

The rationale is to pick the direction that minimizes the norm of the difference
with the gradient. Formally

d = argmin{‖∇f(x)− d‖2 : d ∈ DX(x)}

where DX(x) is the cone of feasible directions, defined as DX(x) = {d ∈
Rn : AA(x)d ≤ 0}, where A(x) is the set of all the active constraints. Notice
that if the difference between the gradient and the direction is 0 it means that
we can stop, since the descent direction would bring us outside the feasible set.

From now on, for sake of clarity, let us denote Ā = AA(x).



142 CHAPTER 6. CONSTRAINED OPTIMIZATION

(a) (b)

Figure 6.1: Anti-gradient pointing inside and outside the cone of feasible directions.

Figure 6.2: How to choose the direction in case of x lying on the boundary and the
anti-gradient of f pointing outside the cone of feasible directions.

At this point we are ready to project the problem in such a way that inequality
constraints become equality constraints:

min
{

1
2‖∇f(x) + d‖2 = 1

2dT Id +∇f(x)d : Ād = 0
}

We discussed how to solve a quadratic problem with equality constraints
in the previous section, in this case the Hessian is the identity matrix I � 0,
therefore we can use the reduced KKT method:{

Qx + ĀT µ = −q
Ād = 0

(x = d, Q = I, b = ∇f(x)d){
d + ĀT µ = −∇f(x)
Ād = 0



6.2. QUADRATIC PROBLEM WITH LINEAR INEQUALITY CONSTRAINTS143

{
d = −∇f(x)− ĀT µ

Ād = 0

{
��̄Ad = −Ā∇f(x)− ĀĀT µ

Ād = 0

{
ĀĀT µ = −Ā∇f(x)
Ād = 0

Therefore, we need to solve a system in µ and then we have the direction. If
the number of active constraints is small, solving the system is very fast.

Fact 6.2.1. We can restrict to solve{
µ = −(ĀĀT )−1

Ā∇f(x)
d = (I − ĀT (ĀĀT )−1

Ā)(−∇f(x))

Proof. Ā has full row rank, then is non singular and may be inverted.

{
µ = −(ĀĀT )−1

Ā∇f(x)
d = −∇f(x) + ĀT (ĀĀT )−1

Ā∇f(x)
⇐⇒

{
µ = −(ĀĀT )−1

Ā∇f(x)
d = (I − ĀT (ĀĀT )−1

Ā)(−∇f(x))

The rationale behind the algorithm is that if the matrix of active constraints Ā
contains some linearly dependent rows; such rows are dropped in order to obtain
an invertible matrix AB , where B ⊆ A(x) such that AB is invertible.
Moreover, we need a vector µB such that all of its components are greater or
equal than zero; if there is a component (say µi ∈ R) that is smaller than zero
the set B of linearly independent active constraints is changed accordingly.

This procedure is formalized in Algorithm 6.2.1, where at line 14 the step-size
is taken as the minimum step size among the ones that satisfy some subsets of
the constraints.



144 CHAPTER 6. CONSTRAINED OPTIMIZATION

Algorithm 6.2.1 Pseudocode for Projected Gradient Method for
quadratic functions.

1: procedure PGM(f,A,b,x, ε)
2: for (; ;) do
3: B ← maximal ⊆ A(x) s.t. rank(AB) = |B|;
4: for (; ;) do
5: d← (I −AB

T (ABAB
T )−1

AB)(−∇f(x));
6: if < ∇f(x),d >≤ ε then
7: µB ← −(ABAB

T )−1
AB∇f(x);

8: µi ← 0 ∀ i /∈ B;
9: if µB ≥ 0 then return

10: end if
11: h← min{i ∈ B : µi < 0};
12: B ← B {h };
13: continue;
14: end if
15: ᾱ ← min{αi = (bi − Aix)/Aid : Aid > 0, i /∈

B};
16: x← x + αd;
17: if ᾱ > 0 then
18: break;
19: end if
20: k ← min{i /∈ B : Aid > 0 : αi = 0};
21: B ← B ∪ { k };
22: end for
23: α← Line_Search(f,x,d, ᾱ);
24: x← x + αd;
25: end for
26: end procedure

Fact 6.2.2. The following holds:

1. If d = 0 and µ ≥ 0 then x is optimal (from KKT);

2. If d = 0 ∧ ∃h ∈ B s.t. µh < 0 then ∃x′ ∈ {x ∈ Rn : AB {h}x =
bB {h} , Ahx ≤ bB {h} } s.t. f(x′) < f(x). In other words, if we remove
h from B, next time we will have a descent direction;

3. Let d 6= 0 be a descent direction and let H := I −AB
T [ABAB

T ]−1
AB be

symmetric and idempotent (HH = HTH = H), then < d,∇f(x) >< 0.

Proof.

trivial;



6.2. QUADRATIC PROBLEM WITH LINEAR INEQUALITY CONSTRAINTS145

(a) (b) (c)

Figure 6.3: Anti-gradient pointing inside and outside the cone of feasible directions.

1.2. ∃d s.t. AB {h}d = 0 ∧ Ahd < 0 =⇒ < ∇f(x),d >=< −µAB ,d >=
−µhAhd < 0;

3.
< d,∇f(x) > =< −H∇f(x),∇f(x) >

= −(H∇f(x))T∇f(x)
= −∇f(x)T

HT∇f(x)
= −∇f(x)T

HTH∇f(x)
= −(H∇f(x))T

H∇f(x)
< 0

Once we found the optimal face we move inside that face and we are dealing
with a steepest descent, which is slow.
At a certain point of the execution the set B of the active constraints will stabilize
and become the one of the optimal solution.
At this point the smart thing to do is to use the KKT conditions, since we know
the set of active constraints. This idea is pursued in Section 6.2.3.

6.2.2 Projected gradient method with box constraints
Let us assume that we have a minimum problem expressed as

(P) min
{
f(x) : l ≤ x ≤ u

}
where the constraints form a box. If we lie inside the box, any descent

direction −∇f(x) is acceptable. Conversely, if we are on the boundary, we could
move along the direction in which the constraint is satisfied, as shown in ??.

Algorithm 6.2.2 starts by picking a feasible solution x between the lower and
the upper bound (say the point in the middle) and then proceed by setting to 0
the component of the direction which would bring us to go outside the feasible
region.



146 CHAPTER 6. CONSTRAINED OPTIMIZATION

Algorithm 6.2.2 Pseudocode for Projected Gradient Method for
quadratic functions in the case of Box Constraints.

1: procedure PGMBC(f, l,u,x, ε)
2: d = −∇f(x);
3: ᾱ =∞;
4: for (i = 1 . . . n s.t. di 6= 0) do
5: if (di < 0) then
6: if (xi = li) then
7: di ← 0;
8: else
9: ᾱ← min{ᾱ(xi − li)/di};

10: end if
11: else
12: if (xi = ui) then
13: di ← 0;
14: else
15: ᾱ← min{ᾱ(ui − xi)/di};
16: end if
17: end if
18: if (< ∇f(x),d >≤ ε) then return
19: end if
20: α← Line_Search(f, x, d, ᾱ);
21: x← x + αd;
22: end for
23: end procedure

Notice that we can assume that li < ui ∀i, because otherwise that component
would be fixed.
This algorithm is a modification of the gradient method, hence it could be very
small. For example, if the box is very large and the optimum lies in the middle
of it this algorithm is exactly the same of the gradient method.

6.2.3 Active-set method for quadratic programs
Let us be given the following quadratic minimum problem

min
{

1
2xTQx + qTx : Ax ≤ b

}
where we know A(x∗).
The active set method works starting from a certain point x, such that the

constraints are satisfied as equalities. According to KKT conditions, a solution x̄
is optimal if x̄ is feasible and µ ≥ 0. Otherwise, if µ is not positive we eliminate
the corresponding constraint from the active set and start again. In the case of
x unfeasible, we know the descent direction, we only need to revise the step size.

All this machinery is formalized in Algorithm 6.2.3.



6.2. QUADRATIC PROBLEM WITH LINEAR INEQUALITY CONSTRAINTS147

Algorithm 6.2.3 Pseudocode for Active Set Method for Quadratic
Programs.

1: procedure ASMQP(Q,q, A,b,x, ε)
2: for (B ← A(x); ;) do
3: solve (PB) min{ 1

2 xTQx + qT x : ABx = bB} for
(x̄, µ̄B);

4: if (Aix̄ ≤ bi ∀ i /∈ B) then
5: if (µB ≥ 0) then return
6: end if
7: h← min{i ∈ B : µi < 0};
8: B ← B {h};
9: continue;

10: end if
11: d← x̄− x;
12: ᾱ← min{αi = (bi −Aix)/Aid : Aid > 0, i /∈ B};
13: x← x + ᾱd;
14: B ← A(x);
15: end for
16: end procedure

By means of Algorithm 6.2.3 we are allowed to solve the same problem under
box constraints, because we end up having three sets: L, indexes of variables
fixed to the lower bound, U , indexes of variables fixed to the upper bound, and
F = {1, . . . , n} (L ∪ U), indexes of free variables.

min
{

1
2xTQx + qTx : l ≤ x ≤ u

}
Let us suppose that l = 0 without loss of generality, then the only constraints

that we need to take into account are those in F set, hence we can rewrite x as

x =

0|L|
x|F |
u|U |


Thanks to this consideration the problem to solve becomes

min
xF

{
1
2xF

TQF F xF + (qF + uU
TQUF )xF

}
[+1

2uU
TQUU uU + qU uU ]

where the quantity in square brackets is constant in xF hence irrelevant for
minimization purposes.

6.2.4 Frank-Wolfe’s method
Let us take a non-linear function and the following problem



148 CHAPTER 6. CONSTRAINED OPTIMIZATION

min{f(x) : Ax ≤ b}

At any step, if the gradient of f is not 0, then we approximate f with a
linear model and use it to pick a descent direction and this is formalized in
Algorithm 6.2.4. The linear model is below the function in the quadratic case,
hence we get a lower bound.

Supposing f is convex we can make a first order model and minimize it over
our constraints.

In this case we use the right constraints and an approximation of the function.

Algorithm 6.2.4 Pseudocode for Frank-Wolfe’s Method for non
linear functions.

1: procedure FWM(f,A,b,x, ε)
2: while (‖∇f(x)‖ > ε) do
3: x̄← arg min{< ∇f(x),y > : Ay ≤ b};
4: d← x̄− x;
5: α← Line_Search(f, x, d, 1);
6: x← x + αd;
7: end while
8: end procedure

Fact 6.2.3. Let (P ) be a non-linear minimum problem and let d be the descent
direction chosen according to the first order model. Then either < ∇f(x),d >= 0
and we are in the optimum or < ∇f(x),d >> 0 and we are moving toward the
optimum.

Notice that the step-size α is bounded below by 0 and above by 1, because
the direction d has as modulo the maximum movement that is possible without
violating the consecutive constraint, as shown in Figure 6.4.

Figure 6.4: Bounds on the step-size.

Fact 6.2.4. Let (P ) be a non-linear minimum problem and let d be the descent
direction chosen according to the first order model. If f is convex the value of



6.3. DUAL METHODS 149

the first order model is below the true value of the function and a point that
has 0 scalar product between the gradient and the descent direction is a global
optimum. Formally,

f(x)+ < ∇f(),d >≤ v(P )

and if < ∇f(),d >= 0, then x is a global optimum.

In general, we trust the linear model only around a certain point x, but the algo-
rithm might move far from it. For this reason, we introduce another constraint
that bounds the movement around x:

Box Constraint: ‖y− x‖∞ ≤ τ

Separable penalty: µ‖y− x‖2
2

As usual, in order to have a better direction, we need to choose a better
model, meaning that we can use second order information as follows:

x̄ = x + arg min
{1

2dT∇2f(x)d +∇f(x)d : A(x + d) ≤ b
}

Notice that if we do not want to compute the Hessian we can always approx-
imate it using quasi-Newton formulae.

In the previous sections we addressed the problem of linear constrained opti-
mization. Our first approach was to deal very little with constraints (projected
gradient method), after a few improvements we took all of them and modify the
function (Frank-Wolfe’s method).

6.3 Dual methods
6.3.1 Dual methods for linear constrained optimization
Let us consider the quadratic problem with linear inequality constraints, formal-
ized as

min
{

1
2xTQx + qT x : Ax ≤ b

}
We can omit the constraints, by adding a penalization term and move to the

dual problem:
∀ fixed λ ≥ 0, the Lagrangian problem is

ψ(λ) = min
x

{
1
2xTQx + qT x + λT (b−Ax)︸ ︷︷ ︸

f ′(x)

}
≤ v(P )

Fact 6.3.1. Let (P ) be the quadratic problem stated above and let ψ be concave
and Q � 0. The optimal solution is x(λ) = Q−1(λTA− qT ).



150 CHAPTER 6. CONSTRAINED OPTIMIZATION

Proof.

∂f ′(x)
∂x =

∂( 1
2 xTQx + qT x + λT (b−Ax))

∂x
= 1

2Qx + qT − λTA

The gradient is 0 iff x = Q−1(λTA− qT ).

Fact 6.3.2. Let (P ) be the quadratic problem stated above and let ψ be differen-
tiable. The gradient of ψ is ∇ψ(λ) = b−Ax(λ).
Proof.

∂ψ(x)
∂λ

=
∂
(

min
{

1
2 xTQx + qT x + λT (b−Ax)

})
∂λ

= b−Ax

Fact 6.3.3. Let (P ) be the quadratic problem stated above, the Lagrangian dual
is the following

(D) max{ψ(λ) : λT ≥ 0}
and the optimum value of the dual problem is not only a lower bound, but it is
exactly the optimum of the primal problem. Formally, v(P ) = v(D).

At this point we only need to solve the dual problem, which has the shape of
a box constrained optimization, where the box has only one boundary and this
can be solved via quasi-Newton methods.
Notice that ψ /∈ C2 so the Hessian is not defined.
This dual approach is advantageous in the case of a small number of constraints,
because the size of the problem decreases. For example, in the case of one
constraint, the Lagrangian dual becomes a problem in one variable, hence
solvable through a line search.
In this method the degenerate case (more than one constraint active at a time)
is not an issue.
If the quadratic function is convex we may use quasi-Newton methods (e.g.
projected gradient). Otherwise the global optimality is not guaranteed and may
be used if we accept not to be able to solve the original problem, but only to
find a lower bound.

� Do you recall?

In Frank-Wolfe’s method we have naturally the upper-bound and the the-
ory of duality allows us to compute a lower-bound for better convergence.

In non-linear constrained optimization the Lagrangian dual allows to have
an upper-bound for the method, hence we have better convergence with respect
to the convergence that we have with only the natural lower-bound.



6.4. BARRIER METHODS 151

6.3.2 Separable problems and partial dual
Let us assume that our constraints are separable, which means that it is not
mandatory to work with all of them, but they can be split into constraints of
groups of variables.

min{f(x) : Ax ≤ b, Ex ≤ d}

We can decide to use a partial dual, writing the Lagrangian problem picking
only some constraints that we chose:

ψ(λ) = min
x
{f(x) + λT (b−Ax) : Ex ≤ d}

The Lagrangian dual method may be better than projected gradient or worse
and it depends on the instance.

In the dual approaches we can’t move inside the feasible solution. We find
an optimum for the dual, which surely breaks feasibility. Then, if the variable is
above the upper-bound it gets decreased to the upper bound, otherwise if it is
below the lower bound it takes the value of the lower bound.

This way we get an upper-bound for the function to be minimized.

6.4 Barrier Methods

� Do you recall?

In dual programming we transform a (possibly) complicated constrained
problem into a problem with simple constraints (or no constraints at all
in the case of linear equality constrained primal problem).

The family of barrier methods is the best class of methods for solving
non-linear constrained optimization problems. This kind of methods are
designed to overcome the cons of dual approaches, namely the fact that ψ does
not have the Hessian (and this creates problems to quasi-Newton method) and
the fact that x is not feasible until the end.
Barrier methods work applying a slight modification to the objective function
ψ in order to make it twice differentiable.

At the same time this methods keep the unconstrained property of the
Lagrangian dual.

6.4.1 Barrier function and central path
Let us take the original problem

(P ) min
x
{f(x) : Ax ≤ b}



152 CHAPTER 6. CONSTRAINED OPTIMIZATION

we modify it by adding a penalty to the objective function f , which depends
on the scalar µ ∈ R+ and it is called logarithmic barrier

(Pµ) min{fµ(x) = f(x)− µ
m∑

i=1
log(bi −Aix)︸ ︷︷ ︸

logarithmic barrier

}

The rationale behind this algorithm is to minimize a modification of the
objective function f which penalizes the value of the original function when the
solution gets closer and closer to the boundaries of the feasible set, as displayed in
two dimensions in Figure 6.5. The parameter µ is there to weight the proximity
to the boundary.

Figure 6.5: Let the function be in two dimensions and hence the barrier is −µ(log(u−
x) + log(x − l). It is clear that the points close to the boundary are penalized.

Minimizing the logarithmic barrier would bring to the middle between the
lower and the upper-bound and that point is called analytic center of the
polyhedron

Property 6.4.1. • If f is convex, fµ is strictly convex;

• If f ∈ C2 then fµ ∈ C2, since log ∈ C∞;

• ∀µ ∃! xµ optimal of (Pµ), since µ
m∑

i=1
log(bi −Aix) is strictly convex;

• As µ → 0 xµ converges to the analytic center of the optimal face. An
example of this behaviour may be seen in Example 6.4.1.

Definition 6.4.1 (Central path). We term central path the sequence of points
for the values of µ from ∞ to 0. Formally,

C = {xµ : µ ∈ (0,∞)}

Example 6.4.1. In Figure 6.6(a) we can see the level-sets of our modified
objective function fµ. We can see that the function goes to −∞ the closest we
get to the border. Intuitively, if µ ≈ +∞, f(x) is not relevant, hence we lay
in the analytic center of the function fµ (Figure 6.6(c)). As µ goes to 0 the
solution x moves along a smooth curve (from Figure 6.6(d) to Figure 6.6(f) until



6.4. BARRIER METHODS 153

(a) (b) (c) x∞ = lim
µ→∞

xµ

(d) (e) (f) x0 = lim
µ→0

xµ

Figure 6.6: A convex fµ, the trajectory converges to the optimal solution of the
problem, when µ → 0.

it gets to an optimal solution of the original problem (center of optimal face of
the polyhedron of constraints).

Notice that the barrier function is chosen to satisfy some properties, such as being
self concordant, that means that provided to be starting from a neighborhood
N of C, xi gets “close” to x(µi) in very few Newton’s steps. Let us pick a point
xi and let us pick the closest vector xµi . If we perform one step of Newton’s
method, we get xi+1, that is “much closer” to xµi than xi. Moreover, xi+1 is
“close” to xµi+1 , with µi+1 � µi (more formally, µi+1 = τµi, τ < 1).
This behaviour may be observed in Figure 6.7
The convergence is linear in the number of variables (O(logn log(1/ε))) exponen-
tial if τ is very small, but these iterations are very costly, because the Hessian
changes at each step, hence it needs to be recomputed.

Computing Newton’s step

.



154 CHAPTER 6. CONSTRAINED OPTIMIZATION

Figure 6.7: The dotted line represents a region where the Newton method is very
efficient. We are starting from a point x1, which belongs to that region and we want
to move towards xµ1 . At next iterate x2 is closer to xµ2 than the current iterate.

� Do you recall?

We are dealing with the following minimum problem

(P ) min
x
{f(x) : Ax ≤ b}

which dual is written as

ψ(λ) = min
x
{f(x) + λT (b−Ax) : Ex ≤ d}

The Karush-Kuhn-Tucker conditions follow:

Primal feasibility: Ax + s = b, s ≥ 0;

Dual feasibility: xTQ+ λTA = −qT , λ ≥ 0;

Complementary slackness: λisi = 0, ∀ i = 1, . . . ,m.

Notice that this is a primal-dual method, because we solve simultaneously
the primal and the dual problem.

We can write a slackened version of KKT conditions in order to characterize
xµ, by imposing λisi = µ, ∀ i = 1, . . . ,m, where µ ∈ R and should be decreased
over iterations until it gets closer enough to 0.
Let us construct Λ, S ∈ D(m,R) such that the diagonal is made of λi and si

respectively:

Λ =


λ1

λ2
. . .

λm

 , S =


s1

s2
. . .

sm


At this point, we rewrite the problem in terms of the displacement from the
fixed current point we are in:



6.4. BARRIER METHODS 155

• x→ x + ∆x

• s→ s + ∆s

• λ→ λ + ∆λ

Taking into account the displacement required by the step we get that the
KKT system becomes:

Primal feasibility: Ax +A∆x + s + ∆s = b, s ≥ 0;

Dual feasibility: xTQ+ ∆xTQ+ λTA+ ∆λTA = −qT , λ ≥ 0;

Complementary slackness: λisi + λi∆si + si∆λi + ∆λi∆si = µ, ∀ i =
1, . . . ,m.

In this new system of coordinates the first two KKT conditions are linear, while
the third one is no longer linear (∆λi∆si). Let us rewrite the KKT system in a
matrix form

 Q AT 0
A 0 I
0 S Λ

 ∆x
∆λ
∆s

 (1)=

 −(Qx + q)− λA
b−Ax− s

µu− ΛSu−∆Λ∆Su

 ≈
 0

0
µu− ΛSu


(6.4.1)

Where (1) holds since ∆λA = AT ∆λT , although ∆λ is written without the
“transpose” syntax to ease notation.

Notice that u =

 1
...
1

 ∈ Rm and has the purpose of adjusting dimension:

S∆λ =

 s1∆λ1
...

sm∆λm

 ∈ Rm; Λ∆s =

 λ1∆s1
...

λm∆sm

 ∈ Rm; µu =

 µ
...
µ

 ∈ Rm;

ΛSu =

 −s1λ1
...

−smλm

 ∈ Rm; ∆Λ∆Su =

 −∆λ1∆s1
...

−∆λm∆sm ∈ Rm

 ∈ Rm;

The algorithm works by starting from a point that is strictly feasible (λ, s >
0), solve the Newton’s system without the non-linear term for finding the
direction and then find the best step-size (α < 1) that allows to move to a
feasible point.



156 CHAPTER 6. CONSTRAINED OPTIMIZATION

6.5 Primal-dual interior point method
This method is based on the observation that we can solve the dual problem

(D) max{−λT b− 1
2xTQx : Qx + λA = −q, λ ≥ 0}

thus obtaining both a lower and upper bound for the solution x:

−λT b− 1
2xTQx ≤ v(D) ≤ v(P ) ≤ 1

2xTQx + qT x

We term complementarity gap the quantity ( 1
2 xTQx + qT x) − (−λb −

1
2 xTQx) = λT s = µ.
Once we found a solution for Equation (6.4.1), we perform a step and compute
a new couple of primal and dual solutions and reduce the gap µ.
Fact 6.5.1. The normal equations (or KKT system) written in Equation (6.4.1)
can be expressed as[

Q AT

A −Λ−1S

] [
∆x
∆λ

]
=
[

0
s− µΛ−1u

]
(6.5.1)

Proof. 1. express ∆s as a linear combination of ∆λ. Let us work on the
third line of Equation (6.4.1):

0∆x + S∆λ + Λ∆s = µu− ΛSu
Λ∆s = µu− ΛSu− S∆λ

∆s = Λ−1µu−��Λ−1
�ΛSu− Λ−1S∆λ

∆s = Λ−1µu− Su− Λ−1S∆λ

∆s = Λ−1 · (µu− S∆λ)− Su
∆s = Λ−1 · (µu− S∆λ)− s

(6.5.2)

2. let us work on the second row of Equation (6.4.1):

A∆x + 0∆λ + I∆s = 0⇔ A∆x = −∆s (6.5.3)

3. substitute Equation (6.5.2) in Equation (6.5.3):

A∆x = −∆s
A∆x = −Λ−1 · (µu− S∆λ) + s
A∆x = −µΛ−1u + Λ−1S∆λ + s

A∆x− Λ−1S∆λ = −µΛ−1u + s

(6.5.4)

4. plug Equation (6.5.4) into the second row of the KKT conditions:[
Q AT

A −Λ−1S

] [
∆x
∆λ

]
=
[

0
s− µΛ−1u

]
(6.5.5)



6.5. PRIMAL-DUAL INTERIOR POINT METHOD 157

Notice that with respect to normal equations of ??, we have in position (2, 2) a
quantity (−Λ−1S), which is not 0, but it is the opposite of a strictly positive
definite matrix.

Fact 6.5.2. We can rewrite the system as something of the shape of reduced
KKT (see Section 6.1).{

Q∆x +AT ∆λ = 0
(Q+AT ΛS−1A)∆x = AT (λ− µS−1u)

(6.5.6)

Proof. The first line follows from the expansion of the first row of the KKT
system (Equation (6.5.5)) and the second one is obtained as follows:

1. isolate ∆λ from the second row of the KKT system (Equation (6.5.5)):

A∆x− Λ−1S∆λ = s− µΛ−1u
Λ−1S∆λ = A∆x− s + µΛ−1u

∆λ = (Λ−1S)−1
A∆x− (Λ−1S)−1s + (Λ−1S)−1

µΛ−1u
∆λ = S−1ΛA∆x− S−1Λs + µS−1

�Λ��Λ−1u
∆λ = S−1ΛA∆x− S−1Λs + µS−1u
∆λ = µS−1u + ΛS−1A∆x− ΛS−1s
∆λ = µS−1u + ΛS−1A∆x− Λu
∆λ = µS−1u + ΛS−1A∆x− λ

(6.5.7)

2. substitute Equation (6.5.7) into the first row of the KKT system (Equa-
tion (6.5.5)):

Q∆x +AT ∆λ = 0
Q∆x +AT · (µS−1u + ΛS−1A∆x− λ) = 0

Q∆x +ATµS−1u +AT ΛS−1A∆x−ATλ = 0
Q∆x +AT ΛS−1A∆x = −ATµS−1u +AT λ

(Q+AT ΛS−1A)∆x = AT (λ− µS−1u)
(6.5.8)

Let us term M = Q+AT ΛS−1A and the following holds.

Fact 6.5.3. If A has full column rank (aka it is invertible) then M is positive
definite (M � 0).



158 CHAPTER 6. CONSTRAINED OPTIMIZATION

At this point we need to factorize the matrix M , that changes at each iteration
(since ΛS−1 does) and this is the bottleneck.
Cholesky factorization may be used, although its complexity is cube. Another
downside of this approach is that the matrix M is much denser than A, Λ and
S−1.
An orthogonal approach to the reduced KKT is called predictor-corrector
and it works computing a solution without taking into account the non linear
term ∆Λ∆Su, then computing it according to the approximated solution and
repeat until convergence.
The bottleneck again is solving the system in Equation (6.4.1).
For what concerns implementation, we should start from a triplet (x,λ, s), that
could be not feasible and then compute the residuals and iterate until feasibility
is reached.

rD = −(Qx + q)− λA

rP = b−Ax− s

When dealing with the step size we need to highlight the fact that λ+∆λ ≥ 0
and s + ∆s ≥ 0 should hold.

In order to achieve this we find the maximum α that satisfies the equality
and then multiply it by a constant ᾱ = 0.995 (or 0.9995), in order to get closer.

Let us assume that we also have a bunch of box constraints, hence our
problem becomes

(P ) min
{

1
2xTQx + qT x : Ax = b, 0 ≤ x ≤ u

}
In this special case, things simplify a lot.


	Introduction
	Introduction to machine learning problems
	Optimization
	Linear estimation
	Low-rank approximation
	Support vector machines


	Mathematical background for optimization problems
	Multi-objective Optimization
	Infima, suprema and extended reals
	Sequences in R and optimization
	Vector spaces and topology
	Topology in R^n

	Limit of a sequence in R^n
	Continuity
	Derivatives
	Multivariate differentiability

	Simple functions
	Linear functions
	Quadratic functions


	Unconstrained Optimality
	Unconstrained Optimization
	First Order Model
	Second Order Model
	Convexity
	Convex sets
	Convex functions

	Convexity and Higher Order Information
	Subgradients and Subdifferentials

	Unconstrained Optimization
	Gradient Method for Quadratic Functions
	Gradient Method for Non Quadratic Functions
	Gradient method for non quadratic functions
	Finding the best step size

	Good Practices for the Design of the Project
	General Descent Methods
	Newton's Method
	Convex case
	Interpretation of Newton's method
	Non convex case

	Quasi-Newton's Methods
	Davidson-Fletcher-Powell
	Broyden-Fletcher-Goldfarb-Shanno
	Poorman's approach - limited memory BFGS

	Conjugate Gradient Method
	Deflected Gradient Methods
	Heavy ball gradient method
	Accelerated gradient

	Incremental Gradient Methods
	Subgradient Methods
	Target level stepsize

	Deflected Subgradient Methods
	Smoothed Gradient Methods
	Bundle Methods
	Cutting-plane algorithm
	Bundle methods


	Constrained Optimality
	Constrained Optimization
	Linear equality constraints
	Background for linear inequality constraints

	Duality
	Lagrangian Duality
	Specialized Dual
	Linear programs
	Quadratic programs
	Conic programs

	Fenchel's Duality

	Constrained Optimization
	Quadratic Problem with Linear Equality Constraints
	Quadratic Problem with Linear Inequality Constraints
	Projected gradient method
	Projected gradient method with box constraints
	Active-set method for quadratic programs
	Frank-Wolfe's method

	Dual methods
	Dual methods for linear constrained optimization
	Separable problems and partial dual

	Barrier Methods
	Barrier function and central path

	Primal-dual interior point method


